

TV Test Receiver EFA, Models 40/43 (DVB-T)

Comprehensive analysis/demodulation/monitoring of digital terrestrial TV signals

- All DVB-T modes supported according to ETS 300 744
- High-end demodulator
- High-end test receiver
- Standard test receiver
- Areas of application: production, single frequency network installation and adjustment, monitoring, coverage, research and development, service
- Comprehensive measurement and monitoring functions
- Simple, user-friendly operation
- Modular design easy retrofitting of options
- IEC/IEEE bus and RS-232-C interface
- MPEG2 decoder option

After the successful launch of the first European DVB-T network (Digital Video Broadcasting – Terrestrial) in Great Britain involving over 1 000 000 subscribers (as of December 2000), DVB-T is gaining ground in Europe at an ever faster pace. In this context, the new DVB-T models of the EFA family of test receivers meet the demand for high-precision reception measurements. Compact in design and featuring comprehensive automatic test functionality, the instrument is ideal for R&D, modulator production testing and in-service monitoring of TV signals.

TV Test Receiver EFA, Models 40/43 (DVB-T)

Standard test receiver (model 40)

- ♦ Selective receiver
- Typical use in the field where adjacent channels need to be filtered
- + High-end synthesizer with low phase noise
- Excellent price/performance ratio

High-end demodulator (model 43)

- Wideband input (non-selective receiver), tunable
- Typically used for transmitter testing
- Outstanding SNR, excellent intermodulation characteristics
- High-end synthesizer with extremely low phase noise

High-end test receiver (model 43 + option EFA-B3)

- Outstanding SNR and improved intermodulation characteristics
- Rejection of image frequency and IF
- Two additional selective RF inputs (50 Ω and 75 Ω)
- Extended frequency range from 4.5 MHz to 1000 MHz

Models and options for DVB-T

					Standard test receivers High-end demodulators						High-end test receivers				
		Models 🜣	40	12	78	43	33	89	43	33	89	Slots			
Option	Designation	Order No.	DVB-T	B/G	D/K or I	DVB-T	B/G	D/K or I	DVB-T	B/G	D/K or I	needed			
EFA-B2	NICAM Demod./Decod. Std B/G or D/K	2067.3610.02	_	0	0	-	O ²⁾	O ²⁾	-	-	-	1			
EFA-B2	NICAM Demod./Decod. Std I	2067.3610.04	_	-	0	-	-	O ²⁾	-	-	-	1			
EFA-B3	RF Preselection	2067.3627.02	_	-	-	0	O ²⁾	O ²⁾	•	•	•	1			
EFA-B4	MPEG2 Decoder	2067.3633.02	0	O ¹⁾	O ¹⁾	0	O ¹⁾²⁾	O ¹⁾²⁾	0	-	-	1			
EFA-B6	Video Distributor	2067.3656.02	_	-	-	O ³⁾	0	0	O ³⁾	0	О	0			
EFA-B7	Switchable Video Bandwidth	2067.3710.02	_	0	-	-	0	_	-	0	-	1			
EFA-B8	RPC Measurement	2067.3727.02	_	0	0	-	0	0	-	0	0	0			
EFA-B10	OFDM Demodulator	2067.3740.02	~	0	0	~	0	0	v	0	0	1			
EFA-B11	6 MHz SAW Filter	2067.3691.00	0	O ¹⁾	O ¹⁾	0	O ¹⁾	O ¹⁾	0	O ¹⁾	O ¹⁾	0			
EFA-B12	7 MHz SAW Filter	2067.3591.00	0	O ¹⁾	O ¹⁾	0	O ¹⁾	O ¹⁾	0	O ¹⁾	O ¹⁾	0			
EFA-B13	8 MHz SAW Filter	2067.3579.02	0	O ¹⁾	O ¹⁾	0	O ¹⁾	O ¹⁾	0	O ¹⁾	O ¹⁾	0			
ZZT-314	Transportation Bag for 3 HU high units	1001.0523.00	0	0	0	0	0	0	0	0	0	0			

Each basic unit has three free slots to take up options.

✓ Included in basic unit
♦ Must be ordered with basic unit

Not applicable

¹) Can be retrofitted if option EFA-B10 is built in.

²) EFA-B2 or EFA-B3 or EFA-B4: only one choice possible.

Can be retrofitted if option EFA-B4 is built in.

Common to all models

- In-depth measurement capabilities
- Simple, user-friendly operation
- Modular design easy retrofitting of options
- General measurement functions for
 - RF input level
 - carrier frequency offset
 - bit rate offset
 - BER (before Viterbi, before and after Reed-Solomon)
- MPEG2 transport stream output (serial or parallel)
- Alarm messages for measurement functions, internal storage
- IEC/IEEE bus and RS-232-C interface

MPEG2 decoder (option EFA-B4)

O Available

- Realtime analysis to ETR 290
- Error report
- Video and audio output

Video distributor (option EFA-B6)¹⁾

Provides four video outputs (two on front and two on rear panel)

6 MHz SAW filter (option EFA-B11)

- Adjacent-channel rejection
- Meets US requirements

7 MHz SAW filter (option EFA-B12)

- Designed to DVB-T standards
- Adjacent-channel rejection
- Meets European and Australian standards

8 MHz SAW filter (option EFA-B13)

- Designed to DVB-T standards
- Adjacent-channel rejection
- Meets European standards

Analog and digital functions in one instrument

EFA models 40/43 belong to the EFA family. Using the OFDM demodulator option (EFA-B10), even analog EFA TV test receivers (models 12 and 78) and demodulators (models 33 and 89) can be upgraded to dual-mode versions: analog and digital in one unit.

1) only possible with model EFA 43 and if option EFA-B4 (MPEG2 decoder) is fitted

Fully compatible to ETS 300744

Characteristics

DVB-T Test Receiver EFA, fully compatible with the ETS 300 744 standard, receives, demodulates, decodes and analyzes OFDM (orthogonal frequency division multiplex) signals. All key parameters for demodulating the receive signal can be selected automatically or manually:

- 6 MHz, 7 MHz or 8 MHz operating bandwidth
- 2K or 8K OFDM modulation
- QPSK, 16QAM or 64QAM constellation diagram
- 1/2, 2/3, 3/4, 5/6 or 7/8 code rate
- 1/4, 1/8, 1/16 or 1/32 guard interval
- α =1, 2 or 4 hierarchical demodulation
- Reed-Solomon error correction 204/188
- 6 MHz, 7 MHz or 8 MHz SAW filter bandwidth (selectable)

The operating principle of the receiver is basically the same as that of the other receivers from the EFA family, except for certain functions specified in standards.

Realtime signal analysis

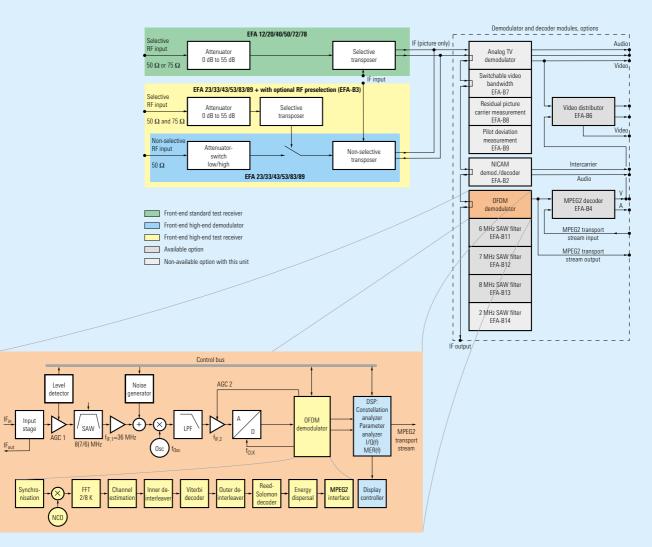
EFA's powerful digital signal processing provides fast and thorough analysis of the received DVB-T signal. Analysis is performed simultaneously with, but independently of, demodulation and decoding. The MPEG2 transport stream is permanently available for decoding as well as for vision and sound reproduction.

Thanks to its realtime analysis capability, the high number of measured values necessary for the complex calculation and display processes are made available for subsequent mathematical/statistical processing in an extremely short, as yet unequalled, time. Because of its high-

Features (see figures page 6 to 9)

EFA-T, even the basic version, features a wide range of innovative measurement functions, allowing comprehensive, indepth signal analysis. As well as measuring general parameters (Fig. 1) such as bit error ratio (BER), more thorough analysis includes:

 I/Q constellation diagrams (Fig. 2): the number of symbols to be displayed is user-selectable, range: 1 to 999 999 symbols


- Calculation of I/Q parameters: amplitude imbalance, quadrature offset and carrier suppression, phase jitter, SNR and MER (modulation error ratio) (Fig. 3)
- Frequency domain displays, e.g. MER(f), I|Q(f) or interferer (Figs 4, 5 and 6)
- Amplitude, phase and group-delay/ frequency response displays (Fig. 7)
- Amplitude spectrum, including automatic shoulder attenuation measurement to ETR 290 (Fig. 8)
- Long-term monitoring of dedicated parameters through the history function (Fig. 9), monitoring time is selectable from 60 seconds to 1000 days
- Linearity analysis from amplitude distribution histogram or CCDF (Figs 10 and 11)
- Received impulse response within the guard interval – including zoom function (Fig. 12)

DVB-T: OFDM modulation for terrestrial broadcasting of digital TV signals

The DVB-T standard employs OFDM (orthogonal frequency division multiplex) modulation. This modulation is applied to the downconverter module (selective or non-selective, depending on the model) which converts the signal to a 36 MHz IF. It can then be filtered by different SAW filters (depending on the occupied bandwidth), and Gaussian noise can be internally added for margin measurements. The IF signal is converted to the baseband using a numeric control oscillator. A Fast Fourier Transform (2k or 8k) translates the signal from the time domain to the frequency domain. Then, channel estimation is used to correct the signal's amplitude, phase and delay (continuous and discrete pilots are used for this task) to eliminate most of the degradation introduced during RF transmission.

Data packets are then applied to the Viterbi convolutional decoder, data deinterleaver (outer de-interleaver), Reed-Solomon decoder and data de-randomizer (energy dispersal). Finally, the MPEG2 interface feeds the demodulated MPEG2 transport stream to the hardware output interface (TS SPI or TS ASI). (see Fig. below).

Block diagram of TV Test Receiver EFA, models 40/43 (DVB-T)

	DYB-T	MEASUR	Ξ				
SET RF (8MHz) 474.00 MHz		ATTEN : -35.7					
FREQUENCY/BI	CONSTELL DIAGRAM						
BITRATE OFFSET -14.2 ppm BER BEFORE VIT 0.0E-10 (1K50/10K0) BER BEFORE RS 0.0E-10 (1K38/10K0) BER AFTER RS 0.0E-9 (1K42/10K0)							
OFDM/CODE R	SPECTRUM∕ TIME DOMAIN.						
	64 1 NH	2 (TPS: 1/32) (TPS: 64) H (TPS: 1 NH) (TPS: 7/9)) (H)	OFDM PARA- METERS			
CODE RATE 7/8 (TPS: 7/8) TPS RESERVED 1234 (HEX) RESET BER							
TS BIT RAT I∕Q	TE 31.668 INTERCHAN			ADD. NOISE OFF			

DYB-1	F F	1EF	isl	IRE	: C	ON	STELL D	LAGRAM
		,	00	SYI	MBO	LS	PROCESSED	CURR LEVEL: -14.0 dBm
	•		ŧ	•	•	*		SYMBOL CNT 100
•	٠	٠	٠	٠	٠	٠	•	HOLD
*	٠	٠	٠	٠	٠	٠	+	
•	٠	٠	٠	•	٠	٠	.* .	FREEZE
•	٠	•	٠	٠	•	٠	•	ON OFF
•	٠	٠	•	٠	٠	٠	•	START CARR
•	٠	•	٠	٠	•	٠	•	
•	٠	•	*	*	٠	*	•	STOP CARR 1704
								ADD. NOISE OFF

DVB-T MEASURE:	OFDM PARAME	TERS
SET RF (8MHz) 474.00 MHz	ATTEN : HIGH -35.7 dBm	
PARAMETERS:CENTR C MODULATOR:	ARR ONLY	CONSTELL DIAGRAM
I∕Q AMPL IMBALANCE I∕Q QUADRATURE ERROR CARRIER SUPPRESSION		FREQUENCY DOMAIN
PHASE TRANSMISSION:	+47 °	SPECTRUM∕ TIME DOMAIN.
PHASE JITTER (RMS) SIGNAL/NOISE RATIO SUMMARY:	0.21 ° 38.9 dB	START CARR
MOD ERR RATIO (RMS) MOD ERR RATIO (MIN) MOD ERR RATIO (RMS)	31.0 dB 23.3 dB 2.8 %	STOP CARR 852
MOD ERR RATIO (MAX)	6.8 %	ADD. NOISE OFF

Fig. 1: Main measurement menu

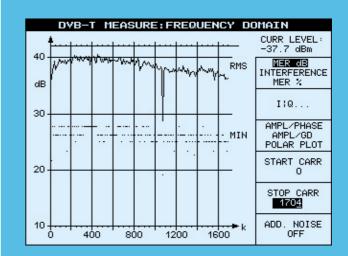
All parameters for the demodulated DVB-T channel are displayed on a single screen and can be checked at a glance:

- the three BERs (bit error ratio) before Viterbi decoder, before and after Reed-Solomon decoder – give a fast quality overview of the demodulated signal
- the frequency offset of the central carrier
- whether the transmitted TPS pilots are correct (compared with the internal demodulator settings)

Hint: The internal noise generator can be activated to perform END (equivalent noise degradation) measurements or noise margin measurements which are based on the BER measurement.

Fig. 2: Constellation diagram

The constellation diagram is always the best way to represent digital modulation. It is also the best visual tool for interpreting measurement results, for example from carrier suppression or I/Q amplitude imbalance measurements. For in-depth analysis, adjustment of the displayed number of symbols is possible (100 symbols are shown in this example). If required, the EFA can set the number automatically to obtain an optimal refresh rate.


Fig. 3: OFDM parameters

All OFDM parameters are calculated from the constellation diagram for the selected carriers. It is then very easy to measure for example the suppression of the RF central carrier of a modulator in 2K mode (carrier 852 – discrete pilot) even in 8K mode (carrier 3408 – continuous pilot).

Fig. 4: MER as a function of frequency

MER as a function of the frequency is one of the most powerful measurements that the EFA can perform. It displays the MER for every QAM modulated carrier of the OFDM signal. At a glance, you can measure the overall quality of the transmitter under test.

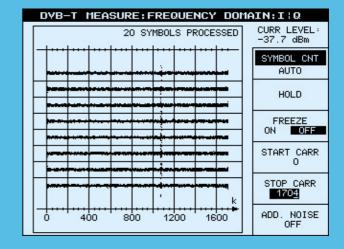
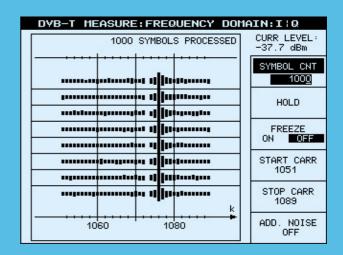

With 'START CARR' and 'STOP CARR', you can quickly locate any impaired QAM carrier in the OFDM signal. Co-channel interference can also be measured and displayed when an interference measurement is performed (interference-to-carrier measurement).

Fig. 5: I/Q versus frequency

This diagram shows symbols versus frequency. In other words, the quadrature (Ω) and the in-phase (I + 90°) information of the constellation diagram are displayed for a complete symbol.


A glance at the constellation diagram immediately shows any errors or degradations.

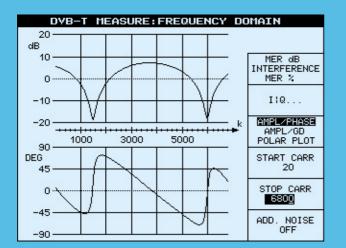


Fig. 6: I/Q versus frequency (zoom)

Effects of interest can be located more precisely by varying the number of symbols and carriers that are displayed. Any impairment (carrier 1076 is clearly marked on display) can then be localized quickly and easily.

The same method can be used for all frequency domain measurements – for example MER versus frequency or the polar plot.

D٧	B-T MEASURE:TIME DOMAIN:SP	ECTRUM
-20	RBW: 7.73 kHz AVG: 50/50	CURR LEVEL: -35.7 dBm
dB -30 ·		AVERAGE CNT
1000000		5 <u>0</u>
-40		PEAK HOLD
-50·		DETECTOR
-60		MIN RMS MAX
		START FREQ -4.48 MHz
-70·		STOP FREQ 4.48 MHz
	-4 -2 0 MHz 4 LDER ATTEN (CHAN 8 MHz, SAW OFF): LOWER: 45.8dB UPPER: 43.9dB	ADD. NOISE OFF

DY	в-т	MEAS	URE:	TIME	DOM	AIN:H	ISTORY
07 LYL/ 1							CURR LEVEL: -15.5 dBm
dBm -20-			http://		₩¥		CONFIG 2nd SCREEN
-30- -40-							FREEZE ON OFF
1E-3-) 1 	0 2	0 3	~	0 t/		AVERAGE MAX MIN MAX&MIN
V+RS 1 1E-5-							INTERVAL 1 MINUTE(S)
1E-6- 1E-7-							RESTART
1E-8J SYNC = D.ERR=							ADD. NOISE OFF

Fig. 7: Channel estimation

In the OFDM demodulation chain, channel estimation compensates for frequency, phase and delay degradations that have been introduced during DVB-T transmission. It is then easy for the EFA to output the amplitude response, the phase response and the group delay, displaying the channel estimation coefficients versus frequency.

The polar plot may also help to interpret very fast echoes (difficult to visualize with impulse response measurements).

Fig. 8: Spectrum analysis

Thanks to this integrated feature, you will not need a separate spectrum analyzer anymore. All basic spectrum analyzer functions are provided, for example start/stop frequency (or center/ span) as are several detection and averaging modes.

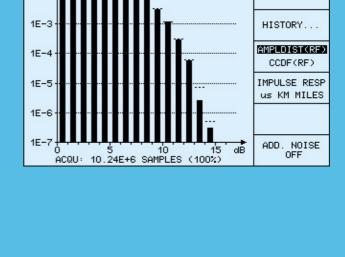
The automatic shoulder attenuation measurement (strictly meets ETR 290), makes checking the performance of any DVB-T transmitter child's play.

Fig. 9: History function

This measurement is just what is required for long-term DVB-T transmitter monitoring. Most key parameters (level, MER/dB, MER/%, BER and synchronization information) are, therefore, displayed in graphical form. This mode can also display all values numerically (average, max, min, current). BER and level measurements run continuously and are independent of other measurements.

Hint: Results are easy to read from a remote location.

Fig 10: Amplitude distribution function


The measurement function for displaying the amplitude distribution or the CCDF (complementary cumulative distribution function) is used to detect nonlinear distortions. The frequency distribution of the DVB-T signal is divided into several 1 dB windows to determine the amplitude distribution. Information on the crest factor is obtained from the frequency distribution and displayed in the upper right-hand corner of the graph.

The reference values are marked by short horizontal lines.

In contrast to the amplitude distribution, each trace point indicates how often a certain voltage level is attained or exceeded.

The ideal frequencies are displayed as short, horizontal lines at 1 dB intervals (reference values) so that the amplitude distribution of the applied signal can be compared with that of an ideal DVB-T signal. Any deviation from the ideal distribution is then identified by the deviations of the column heights and the value of the crest factor, for example due to clipping in the transmitter output stage.

MEASURE: SPECTRUM/TIME

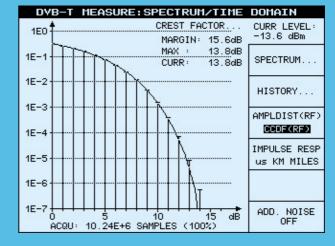
CREST FACTOR

MARGIN

MAX

15.6dB 14.5dB 14.5dB DOMAIN

CURR LEVEL :


13.6 dBm

SPECTRUM.

DYB-T

1E-1

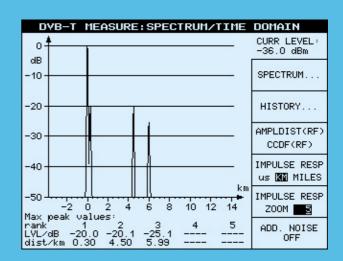

1E

Fig 12: Impulse response

The impulse response measurement (within the guard interval) is very useful. Especially so for single frequency network (SFN) adjustment. The measurement lets you visualize and measure (numeric values) the main DVB-T signal (0 dB, reference), echoes and pre-echoes. The zoom function lets you visualize fast echoes that may occur in urban areas (reflections from buildings).

To suit the application, the X axis unit and scale can be changed, for example from μs to km or even miles.

Typical applications

Production testing on modulators and transmitters (calibration and test)

EFA's analysis capabilities make it possible to pinpoint problems such as interferers and inadequate carrier suppression: the constellation diagram shows the symbols, but only if a single carrier is affected – the difficulty is localization. This is exactly what the I/Q measurement function does: symbols are displayed as a function of carriers (frequency domain) to locate the problem in the spectrum display. Once the interferer is localized, the constellation display can be used for further evaluation. This approach can also be used with the MER-vs-frequency measurement function.

Transmitter installation and adjustment of single frequency networks (SFN)

The time domain analysis extends EFA's range of applications to SFN installation and adjustment – an area where spectrum and impulse-response analysis are very useful. The impulse response function makes it possible to visualize the delay between two transmitters at a reception point. This measurement function can be used to optimize the delay between the transmitters. The zoom function makes it possible to see fast echoes, for example direct reflections from a building, mountain etc.

Coverage measurements on terrestrial signals (see photo above)

To allow measurements to be performed under even the worst reception conditions, a single keystroke will optimize the OFDM demodulator for mobile reception (where a lot of impairments affect transmission quality) or stationary reception. The algorithms for speed and channel equalization are optimized, as is internal level control.

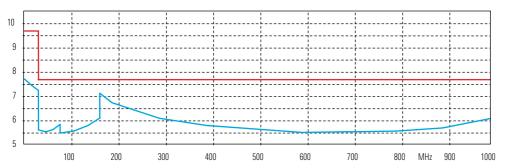
Monitoring TV transmitters and transposers

EFA is the perfect solution for DVB-T signal monitoring. An alarm is triggered if one of the selected parameters exceeds the threshold that has been set. The incident level, OFDM synchronization, MER (modulation error ratio), BER (before Viterbi and before Reed-Solomon decoders) and the MPEG2 transport stream output can be checked in realtime independent of other measurements and decoding. If an error occurs, a 1000-row register is available to record the date, time and designation of the event. The MPEG2 decoder option EFA-B4 extends monitoring capabilities. Realtime measurements to test specifications for DVB systems (ETR290 – priorities 1, 2 and 3) can be performed and make the EFA a complete DVB-T monitoring system.

most important measurement	~	required m	easuremer	nt	The	table be	low sun	nmarizes	s the me	asuremo	ents req	uired fo	r the vai	rious DV	B-T appl	lications
DVB-T OFDM application	Level	BER	MER	SNR	Carrier suppression	Quadrature error	Amplitude imbalance	Phase jitter	Constellation diagram	MER(f)	1/Q(f)	Spectrum-shoulder attenuation	Amplitude(f)/phase(f)/ group	Amplitude distribution CCDF	Impulse response	History
Production of modulators and transmitters	>	~	~	V	~	V	~	>	~	>	>	V	V	!		V
Transmitter installation and SFN adjustments	>	~	~						~	>	>	V				V
Coverage measurement of terrestrial signals	>	!	~						~			V			~	V
Monitoring of TV transmitters and transposers	>	~	~						~					~	~	!
Research&Development	~	~	~	~	~	~	~	~	~		~	~	~	~	~	r
Service	>	~	~	~	~	~	~	~	!	>	~	~	~	~		~

Specifications

Realtime measurement functions to test specifications for DVB systems (ETR 290)


Model-specific characteristics

	DVB-T standard test receiver (model 40)	DVB-T high-end test receiver (model 43) with option EFA-B3	DVB-T high-end demodulator (model 43)
RF input	selective	selective	non-selective
Connector	50 Ω or 75 Ω , BNC or N female, front or rear panel (see configuration sheet)	50 Ω , N female, rear panel and 75 $\Omega,$ BNC female, rear panel	50 Ω , N female, rear panel
Return loss	≥14 dB in channel with 50 Ω connector and input attenuation ≥10 dB ≥12 dB in channel with 75 Ω connector and input attenuation ≥10 dB	≥17 dB (>20 dB typ.) in channel with 50 Ω connector ≥14 dB (>17 dB typ.) in channel with 75 Ω connector	≥30 dB
Frequency range	48 MHz to 862 MHz	4.5 MHz to 1000 MHz ¹)	45 MHz to 1000 MHz
Level range (lower values: QPSK only ¹) ²))	-72 dBm to +20 dBm (with LOW NOISE, preamplifier = OFF) -82 dBm to -47 dBm (with LOW NOISE, preamplifier = ON) -88 dBm to -47 dBm (with LOW NOISE, preamplifier = ON and HIGH ADJ CHAN POWER = ON)	-85 dBm to +14 dBm (low noise) -80 dBm to +20 dBm (normal) -80 dBm to +20 dBm (low distortion) -90 dBm to -10 dBm (low noise and HIGH ADJ CHAN POWER = ON)	–50 dBm to +20 dBm
Noise figure (50 Ω input, RF ≥47.15 MHz)	12 dB typ. (low noise) 7 dB typ. (preamplifier and low noise)	7 dB typ. (low noise) 9 dB typ. (normal) 11 dB typ. (low distortion)	
Image frequency rejection	\geq 70 dB (VHF) and \geq 50 dB (UHF)	100 dB	
IF rejection		100 dB	
Local oscillator			
Resolution	1 Hz	1 Hz	1 Hz
Frequency error	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶
OFDM demodulator characteristics			
Inherent MER ²)	≥38 dB	≥40 dB	≥40 dB
Inherent SNR ²)	≥39 dB	≥41 dB	≥41 dB

¹) At low input frequencies such as 4.57 MHz: additional tilt (0.7 dB pp typ.), minimum input level: -30 dBm, SAW filter ON.

²) Valid for instruments delivered as of January 2001.

RF Preselection for demodulator – option EFA-B3

Noise figure (low noise mode)

Common characteristics

IF input	50 Ω , BNC female, rear panel, 36 MHz
Return loss in channel	≥30 dB
Level range	-30 dBm to -5 dBm
IF output	50 Ω , BNC female, rear panel, 36 MHz
Return loss in channel	≥20 dB
Level, regulated	-17 dBm

OFDM characteristics							
Bandwidth operation		6 MHz, 7 MHz and 8 MHz switchable					
SAW filters		6 MHz, 7 MHz, 8 MHz or OFF					
Bit rate clock inaccuracy		<10 ppm (< 3 ppm typ.)					
FFT mode		2K or 8K carriers					
Constellation		QPSK, 16QAM, 64QAM					
Guard interval		1/4, 1/8, 1/16, 1/32					
Code rate		1/2, 2/3, 3/4, 5/6, 7/8					
Hierarchical modulation		0FF, α=1, α=2, α=4					
Equivalent noise degradation (END) at 640AM; R 2/3	}	≤1.5 dB					
Channel correction		self-adapting					
I/Q inversion		automatic, with indication					
BER processing		before Viterbi decoder, before and after Reed-Solomon decoder					
Measurements level, frequency offset, bit rate offset / BER (bit err MER (modulation error ratio) in dB and % / SNR (s phase jitter / shoulder attenuation (upper/lower) Graphic displays	signal-to-noise ratio), carrier su	er, before and after Reed-Solomon decoder / uppression (2K and 8K) / quadrature error, amplitude imbalance					
constellation diagram, start/stop frequencies and MER(f) in %: RMS and min. values, start/stop freq I/Q(f), start/stop frequencies and number of symbi amplitude(f), start/stop frequencies selectable / pl polar plot, start/stop frequencies selectable / amp	uencies selectable / Interferen ols selectable / frequency spe hase(f), start/stop frequencies litude distribution(RF) / CCDF	e / MER(f) in dB: RMS and max. values, start/stop frequencies selectable / nce(f) in dB: RMS and max. values, start/stop frequencies selectable / ctrum, start/stop frequencies selectable / s selectable / group delay(f), start/stop frequencies selectable / (RF) / impulse response(t) with zoom (max. zoom = 20) / R before Reed-Solomon decoder, all measurements: MAX and MIN and AVERAGE					
Protection ratio for DVB-T interfered with by analog TV nel (n-1), 640AM, R 2/3, 8 MHz, 0EF, LOW DISTORTIC POWER = ON (valid for instruments delivered as of January 2	ON and HIGH ADJ CHAN	- 44 dB typ.					
Protection ratio for DVB-T interfered with by analog T channel ($n+1$), 640AM, R 2/3, 8 MHz, 0EF, LOW DIS CHAN POWER = ON (valid for instruments delivered as of Ja	TORTION and HIGH ADJ	42 dB typ.					
MPEG2 TS parallel output		synchronous LVDS (188 byte, 204 byte, TS-SPI), 100 Ω					
		Synchionous LVD3 (100 byte, 204 byte, 13-31 l), 100 S2					
MPEG2 TS ASI output		asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω					
SER DATA output		asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω					
SER DATA output		asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω serial data stream ahead of Viterbi decoder; 75 Ω					
MPEG2 TS ASI output SER DATA output SER CLOCK output Alarm messages Storage		asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω serial data stream ahead of Viterbi decoder; 75 Ω clock output for SER DATA; 75 Ω level, synchronization, BER before Viterbi, BER before and after Reed-Solomon,					
SER DATA output SER CLOCK output Alarm messages Storage		asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω serial data stream ahead of Viterbi decoder; 75 Ω clock output for SER DATA; 75 Ω level, synchronization, BER before Viterbi, BER before and after Reed-Solomon, data transmission error					
SER DATA output SER CLOCK output Alarm messages	Range	asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω serial data stream ahead of Viterbi decoder; 75 Ω clock output for SER DATA; 75 Ω level, synchronization, BER before Viterbi, BER before and after Reed-Solomon, data transmission error with date and time, up to 1000 lines					
SER DATA output SER CLOCK output Alarm messages Storage Memory for instrument setup storage		asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω serial data stream ahead of Viterbi decoder; 75 Ω clock output for SER DATA; 75 Ω level, synchronization, BER before Viterbi, BER before and after Reed-Solomon, data transmission error with date and time, up to 1000 lines 0 to 4 Resolution					
SER DATA output SER CLOCK output Alarm messages Storage Memory for instrument setup storage Test parameters Level	depending on model, see a	asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω serial data stream ahead of Viterbi decoder; 75 Ω clock output for SER DATA; 75 Ω level, synchronization, BER before Viterbi, BER before and after Reed-Solomon, data transmission error with date and time, up to 1000 lines 0 to 4 Resolution above 0.1 dB					
SER DATA output SER CLOCK output Alarm messages Storage Memory for instrument setup storage Test parameters Level MER (modulation error ratio) in dB	depending on model, see a depending on mode of QAI	asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω serial data stream ahead of Viterbi decoder; 75 Ω clock output for SER DATA; 75 Ω level, synchronization, BER before Viterbi, BER before and after Reed-Solomon, data transmission error with date and time, up to 1000 lines 0 to 4 Resolution blove 0.1 dB M 0.1 dB					
SER DATA output SER CLOCK output Alarm messages Storage Memory for instrument setup storage Test parameters	depending on model, see a	asynchronous serial MPEG2 transport stream (TS-ASI); 75 Ω serial data stream ahead of Viterbi decoder; 75 Ω clock output for SER DATA; 75 Ω level, synchronization, BER before Viterbi, BER before and after Reed-Solomon, data transmission error with date and time, up to 1000 lines 0 to 4 Resolution blove 0.1 dB M 0.1 dB M 0.1%					

SNR (signal-to-noise ratio)	depending on mode of QAM	0.1 dB
Carrier suppression (2K and 8K)	-5 dB to +30 dB	0.1 dB
I/Q amplitude imbalance	±5%	0.01%
I/Q quadrature error	±5°	0.01°
Frequency offset	±300 kHz	1 Hz
Bit rate offset	±40 ppm	0.1 ppm
BER before Viterbi	1.0×10^{-2} to 0.1×10^{-15}	0.1 x 10 ^{-exponent}
BER before Reed-Solomon	1.0 x 10 ⁻³ to 0.1 x 10 ⁻¹⁵	0.1 x 10 ^{-exponent}
BER after Reed-Solomon	1.0 x 10 ⁻⁴ to 0.1 x 10 ⁻¹⁴	0.1 x 10 ^{-exponent}
Crest factor	0.0 dB to 15.0 dB	0.1 dB
Echo values (max. = 5 echoes)	0.0 dB to -40.0 dB, $-62.2~\mu s$ to $+236.4~\mu s$ (8K FFT, 8 MHz channel bandwidth)	0.1 dB, 10 ns

MPEG2 decoder – option EFA-B4

Realtime measurement functions: simultaneous monitoring of all signals in transport stream Realtime measurement functions according to test specifications for DVB systems (ETR290): priorities 1, 2 and 3

Signal format	
Transport stream	to ISO/IEC 1-13818
Data rate of transport stream	up to 54 Mbit/s
Length of data packets	188/204 bytes, automatic switchover
Signal input	
Internal: from DVB demodulator External: asynchronous serial MPEG2 transport stream, 270 Mbit/s (TS ASI)	BNC connector on rear panel, 200 mV pp to 1 V pp, 75 Ω
Video signal output	
CCVS (PAL, SECAM, NTSC)	BNC connector on rear panel, 1 V pp ±1%, 75 Ω
Video serial digital (ITU-R 601), 270 Mbit/s	BNC connector on rear panel, 800 mV pp, 75 Ω
Audio	
Connectors	Lemo Triax female, paired; on front panel: unbalanced, on rear panel: balanced, floating
Impedance	<25 Ω
Signals	mono, left/right, sound 1/ sound 2
Level (full scale)	+6 dBm ±0.2 dB into 600 Ω
Frequency response (40 Hz to 15 kHz)	± 0.5 dB relative to 1 kHz
S/N ratio	>70 dB, unweighted
THD	>70 dB

Video distributor – option EFA-B6

Video output	2 x BNC female on front panel; 2 x BNC female on rear panel
Impedance	75 Ω
Return loss (0 Hz to 6 MHz)	≥26 dB
Level inaccuracy	≤2%
DC offset of video signal, MPEG2 decoder mode, black level	0 V
Decoupling of outputs (level variation at terminated output when switching the other outputs between short circuit and open circuit)	≤1%

6 MHz SAW filter – option EFA-B11

Ripple in band	0.4 dB pp
Rejection of adjacent channels	>50 dB (>±3.8 MHz) >85 dB (>±5.3 MHz) with high adj. channel power 0N

7 MHz SAW filter – option EFA-B12

Ripple in band	0.7 dB pp
Rejection of adjacent channels	>55 dB (> \pm 4.0 MHz) >90 dB (> \pm 5.3 MHz) with high adj. channel power ON

8 MHz SAW filter – option EFA-B13

Ripple in band	0.8 dB pp
Rejection of adjacent channels	>55 dB (>±4.4 MHz) >90 dB (>±5.3 MHz) with high adj. channel power ON

General data

Display	monochrome LCD (320 x 240), backlit
Interfaces	IEC625-2/IEEE488 bus, RS-232-C, printer (Centronics)
Temperature range	to IEC68-2-1/-2
Rated temperature range	+5°C to +45°C
Operating temperature range	0°C to +50°C
Power supply	100 V to 120 V/220 V to 240 V +10%/-15% (autoranging), 50 Hz to 60 Hz
Power consumption	EFA 40: 70 W EFA 43: 75 W EFA 43 + EFA-B3: 90 W
Dimensions (W x H x D)	435 mm x 147 mm x 460 mm
Weight	approx. 12 kg, depending on options

Ordering information

DVB-T Test Receiver *) Selective, constellation diagram, output MPEG2 data stream	EFA 40	2067.3004.40
DVB-T Test Demodulator *) Broadband, constellation diagram, output MPEG2 data stream	EFA 43	2067.3004.43

Options

RF Preselection for demodulator	EFA-B3	2067.3627.02
MPEG2 Decoder	EFA-B4	2067.3633.02
Video Distributor	EFA-B6	2067.3656.02
OFDM Demodulator (for analog units)	EFA-B10	2067.3740.02
6 MHz SAW Filter	EFA-B11	2067.3691.00
7 MHz SAW Filter	EFA-B12	2067.3591.00
8 MHz SAW Filter	EFA-B13	2067.3579.02

Recommended extras

EFA Calibration Values	EFA-DCV	2082.0490.09
19" Adapter	ZZA-93	0396.4892.00
Lemo Triax connector (mono) with connecting cable (open)		2067.7451.00
Service manual		2068.0950.24
Transportation Bag for 3 HU high units	ZZT-314	1001.0523.00

*) Note: please fill in configuration sheet (available from your local representative or from Rohde & Schwarz WEB site, EFA section) so that your test receiver/demodulator can be tailored to your requirements.

Further EFA family members ...

... see EFA main data sheet (PD 0757.2421), including: EFA models 20/23 (DVB-C), EFA models 12/33 (analog standard B/G), EFA models 78/89 (analog standard D/K or I), EFA models 72/83 (analog standard M/N)

Fax Reply (TV Test Receiver EFA, Models 40/43 (DVB-T))

- Please send me an offer
- □ I would like a demo
- Please call me
- □ I would like to receive your free-of-charge CD-ROM catalogs

Others:

Name: Company/Department: Position: Address:	
Country	
Country: Telephone: Fax:	
E-mail:	

Mobile reception with EFA models 40 and 43

When the EFA 40/43 is set to MOBILE mode (SPEC FUNC: SYSTEM OPTIMISATION), mobile reception is optimized. The firmware version 4.60 offers improved reception of faded signals. Although further software updates can improve the synchronization to faded signals, the 2K mode of the EFA 40/43 is better for receiving faded signals than the 8K mode. The following measurements provide current information about the performance of the EFA 40/43. These measurement results are valid for firmware 4.60.

2K mode

In the 2K mode, a faded signal simulating a typical urban (TU6) reception environment is fed to the EFA. The signal comprises 6 paths with wide delay dispersion and relatively strong power (see ETR 290, Annex K.3).

Tap number	Delay (µs)	Power (dB)	Doppler spectrum
1	0.0	-3	Rayleigh
2	0.2	0	Rayleigh
3	0.5	-2	Rayleigh
4	1.6	-6	Rayleigh
5	2.3	-8	Rayleigh
6	5.0	-10	Rayleigh

The EFA was set up as follows:

- Channel bandwidth = 8 MHz

System optimization = mobile

- SAW filter bandwidth = 8 MHz

The Doppler frequency (which is a function of speed and radio frequency) was increased until the BER before the Reed-Solomon decoder was 2.0E-4 or until one MPEG data error occurred in 1 minute. The following table indicates the Doppler frequency in Hz.

Order of QAM	Code rate	Guard = 1/4	Guard = 1/8
	1/2	58	61
	2/3	40	42
QPSK	3/4	33	35
	5/6	28	26
	7/8	24	22
	1/2	30	26
	2/3	21	25
160AM	3/4	14	9
	5/6	0.2	0.5
	7/8	0.4	0.2
	1/2	5	4
	2/3	0.2	0.2
64QAM	3/4	0.2	0
	5/6	0	0
	7/8	0	0

Order of QAM	Code rate	Guard = 1/16	Guard = 1/32
	1/2	60	67
	2/3	44	47
QPSK	3/4	36	39
	5/6	27	31
	7/8	23	25
	1/2	32	35
	2/3	24	24
16QAM	3/4	18	16
	5/6	7	5
	7/8	0.3	0.3
	1/2	1	1
64QAM	2/3	0	0
	3/4	0	0
	5/6	0	0
	7/8	l n	ln

8K mode

In the 8K mode, a $\,$ 0 dB echo profile according to ETR290, Annex K.3, was fed to the EFA:

Tap number	Delay (µs)	Power (dB)	Doppler spectrum	Frequency ratio
1	0.0	0	pure Doppler	-1
2	1/2 T _G	0	pure Doppler	+1

The Doppler frequency (which is a function of speed and radio frequency) was

increased until the BER before the Reed-Solomon decoder was 2.0E-4 or until

one MPEG data error occurred in 1 minute. The following table indicates the

The EFA was set up as follows:

- Channel bandwidth = 8 MHz

- System optimization = mobile

- SAW filter bandwidth = 8 MHz

Order of QAM	Code rate	Guard = 1/4	Guard = 1/8
	1/2	23.1	21.0
	2/3	7.2	15.5
QPSK	3/4	0.5	10.9
	5/6	0	5.0
	7/8	0	0
	1/2	10.2	5.1
	2/3	0.2	3.4
16QAM	3/4	0	2.3
	5/6	0	0.1
	7/8	0	0
	1/2	0	1.8
	2/3	0	0
640AM	3/4	0	0
	5/6	0	0
	7/8	0	0
	F		1
Order of QAM	Code rate	Guard = 1/16	Guard = 1/32
	1/2	23.3	24.5
	2/2	17.0	17.0

	0000 1010	Guuru – 1/10	00010 - 1702
	1/2	23.3	24.5
	2/3	17.0	17.0
QPSK	3/4	12.2	11.8
	5/6	7.2	7.6
	7/8	4.0	4.1
	1/2	8.8	8.8
	2/3	5.7	5.9
16QAM	3/4	4.8	5.1
	5/6	3.0	3.4
	7/8	1.0	2.3
	1/2	3.6	3.7
	2/3	1.8	2.0
64QAM	3/4	1.3	1.6
	5/6	0	0.8
	7/8	0	0

Test Receiver R&S EFA ATSC/8VSB – ITU-T J.83/B – M/N Analog TV

Comprehensive analysis/demodulation/monitoring of digital and analog TV signals

- Standard test receiver
- High-end test receiver
- High-end demodulator
- Multistandard digital and analog platform for terrestrial and CATV applications
- Application areas: production, monitoring, coverage, service, research and development
- Comprehensive measurement and monitoring functions
- Modular design easy retrofitting of options
- SDTV MPEG2 analyzer/decoder option
- ◆ IEC/IEEE-bus and RS-232-C interface
- Simple, user-friendly operation

The EFA Family

The TV Test Receiver and Demodulator Family EFA offers outstanding performance features and excellent transmission characteristics. The instruments provide high-precision reception and demodulation of vestigial sideband AM signals (analog TV signals) as well as of digitally modulated TV signals. They measure a comprehensive range of transmission parameters and are therefore ideal for measurement and monitoring applications in cable networks, TV transmitter stations and development labs.

The complete EFA family at a glance

Standard test receivers

- Model 50: digital TV, ATSC/8VSB
- Model 70: digital TV, ITU-T J.83/B
- Model 90: analog TV, standard M/N

High-end test receivers

- Model 53 incl. option EFA-B3: digital TV, ATSC/8VSB
- Model 73 incl. option EFA-B3: digital TV, ITU-T J.83/B
- Model 93 incl. option EFA-B3: analog TV, standard M/N

High-end demodulators

- ◆ Model 53: digital TV, ATSC/8VSB
- ◆ Model 73: digital TV, ITU-T J.83/B
- Model 93: analog TV, standard M/N

Standard test receiver

Model 40: digital TV, DVB-T

High-end test receiver

 Model 43 incl. option EFA-B3: digital TV, DVB-T

High-end demodulator

Model 43: digital TV, DVB-T

Data sheet No. PD 0757.5514.xx

Standard test receivers

- ◆ Model 60: digital TV, DVB-C
- Model 12: analog TV, standard B/G
- Model 78: analog TV, standard D/K or I

High-end test receivers

- Model 63 incl. option EFA-B3: digital TV, DVB-C
- Model 33 incl. option EFA-B3: analog TV, standard B/G
- Model 89 incl. option EFA-B3: analog TV, standard D/K or I

High-end demodulators

- Model 63: digital TV, DVB-C
- ◆ Model 33: analog TV, standard B/G
- ◆ Model 89: analog TV, standard D/K or I

Wide variety of models

The TV Test Receiver Family EFA from Rohde & Schwarz is a versatile and highperformance TV test receiver and demodulator platform, which can be optimally configured for any application, whether digital or analog.

Three frontends are available:

standard selective, high-end selective and high-end non-selective.

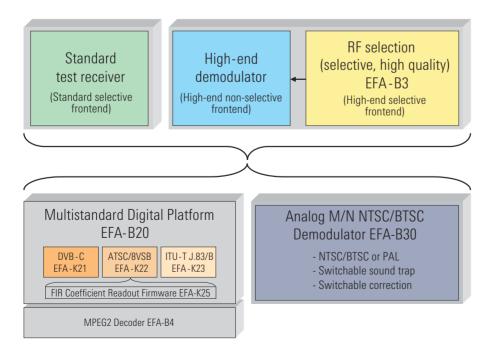
The high-end models have an even better signal-to-noise ratio than the standard models and offer excellent intermodulation characteristics. This, coupled with minimum inherent frequency response, guarantees extremely accurate measurements. The approach described in the following will help you find the right EFA model for your application:

- If the application mainly concerns measurements in cable networks or on terrestrial signals, a receiver model that selects the channel to be measured is the appropriate choice. Adjacent-channel signals, which impair measurement results, are filtered out by high suppression. Then, a choice has to be made between the standard selective and the high-end selective version. As with the other criteria, this choice depends on the application.
- Measurements on modulators or TV transmitters, where only one TV signal is involved, are performed with one of the demodulator models with the high-end non-selective frontend, which guarantees extremely low measurement uncertainty without preselection.

 The last selection criterion is the TV demodulator used, and whether it is analog and/or digital

The EFA test receivers can be configured for digital signals and for the analog TV standard M/N (option EFA-B30).

Operation involving a mix of analog and digital channels is becoming more widespread. In addition to the analog models, the digital demodulator option offers complete digital measurement functionality:


 For terrestrial applications, this task is performed by the digital

ATSC/8VSB demodulator (options EFA-B20 + EFA-K22)

 In cable networks, this is handled by the QAM demodulator option for the

> ITU-T J.83/B standard (options EFA-B20 + EFA-K23) or DVB-C standard (options EFA-B20 + EFA-K21)

 For baseband analysis, the SDTV MPEG2 analyzer/decoder (option EFA-B4) rounds off the EFA product line.

EFA model selection concept

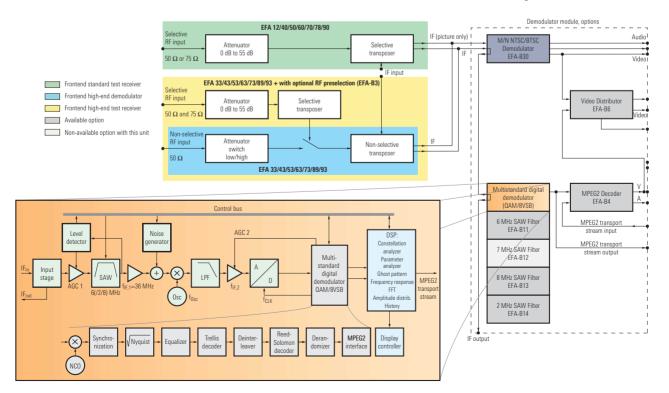
The EFA Family

EFA — realtime signal analysis

EFA's powerful digital signal processing provides fast and thorough analysis of the received digitally modulated TV signal. Analysis is performed simultaneously with, but independently of, demodulation and decoding. The MPEG2 transport stream is permanently available for decoding as well as for video and audio reproduction.

Due to its realtime analysis capability, the high number of measured values necessary for the complex calculation and display processes are made available for subsequent mathematical/statistical processing in an extremely short and as yet unequalled time. Because of its highspeed data acquisition, the TV Test Receiver EFA is the ideal choice not only for R&D but also for production environments where short measurement cycles are essential.

Standard test receiver (EFA models 50/70/90)


- Selective receiver
- Typical use in the field where adjacent channels need to be filtered
- High-end synthesizer with low phase noise
- Excellent price/performance ratio

High-end demodulator (EFA models 53/73/93)

- Wideband input (non-selective receiver), tunable
- Typically used for transmitter testing
- Outstanding SNR, excellent intermodulation characteristics
- High-end synthesizer with extremely low phase noise

High-end test receiver (EFA models 53/73/93 + option EFA-B3)

- Outstanding SNR and improved intermodulation characteristics
- Rejection of image frequency and IF
- Two additional selective RF inputs (50 Ω and 75 Ω)
- Extended frequency range from 4.5 MHz to 1000 MHz

Block diagram of TV Test Receiver EFA

Table of available EFA models & options

			Standard test receivers			High-end demodulators				High-end test receivers					
		Models	50	60	70	90	53	63	73	93	53	63	73	93	Slot
Option	Designation	Order No.	8VSB	DVB-C	J.83/B	M/N	8VSB	DVB-C	J.83/B	M/N	8VSB	DVB-C	J.83/B	M/N	needed
EFA-B3	RF Preselection	2067.3627.02	-	-	-	-	0	0	0	0	•	•	•	•	1
EFA-B4	MPEG2 Decoder	2067.3633.02	-	О	О	O ¹⁾	-	О	0	O ¹⁾	-	О	О	O ¹⁾	1
EFA-B6	Video Distributor	2067.3656.02	-	-	-	-	O ³⁾	O 3)	O 3)	0	O ³⁾	O 3)	O 3)	0	0
EFA-B11	6 MHz SAW Filter	2067.3691.00	О	0	0	О	О	О	О	0	0	О	О	0	0
EFA-B13	8 MHz SAW Filter	2067.3579.03	О	0	0	О	О	0	0	0	0	О	О	0	0
EFA-B14	2 MHz SAW Filter	2067.2562.00	О	0	0	О	О	0	0	0	0	О	О	0	0
EFA-B20	Digital Demodulator Platform	2067.3585.02	~	~	~	O^{2}	~	~	~	O ²⁾	~	~	~	O ²⁾	1
EFA-B30	M/N NTSC/BTSC Demodulator	2067.3556.02	О	0	0	~	О	0	0	~	0	О	О	~	1
EFA-K21	DVB-C / J.83/A/C (QAM) Firmware	2067.4000.02	О	~	0	О	О	~	О	0	0	~	О	0	0
EFA-K22	ATSC/8VSB Firmware	2067.4017.02	~	0	0	О	~	0	0	0	~	О	О	0	0
EFA-K23	J.83/B Firmware	2067.4023.02	О	0	~	О	О	0	~	0	0	О	~	0	0
EFA-K25	FIR Coefficient Readout Firmware	2067.4046.02	O ⁴⁾	O ⁴⁾	O ⁴⁾	O ⁴⁾	O ⁴⁾	O ⁴⁾	O ⁴⁾	O ⁴⁾	O ⁴⁾	O ⁴⁾	O ⁴⁾	O ⁴⁾	0
ZZT-314	Carrying Bag for 19" units, 3 HU	1001.0523.00	0	0	0	О	0	0	0	0	0	0	0	0	0

Each basic unit has three free slots to take up options.

1) Can be retrofitted if option EFA-B20 is built in.

²⁾ Must be ordered with min. one firmware option (EFA-K21 or EFA-K22 or EFA-K23).

Common to all models

- In-depth measurement capabilities
- Simple, user-friendly operation
- Modular design easy retrofitting of options
- Alarm messages for measurement functions, internal storage
- IEC/IEEE-bus and RS-232-C interface

Digital options

Digital Demodulator Platform EFA-B20

- Retrofit of analog instruments
- Multistandard demodulator platform supporting DVB-C demodulation (with EFA-K21), ATSC/8VSB demodulation (with EFA-K22), ITU-T J.83/B demodulation (with EFA-K23)
- Included in basic EFA 50/53/60/63/ 70/73 models
- MPEG2 transport stream output (serial or parallel)
- General measurement functions for
 - RF input level
 - carrier frequency offset
 - bit rate offset
 - BER (before and after Reed-Solomon)

MPEG2 Decoder EFA-B4

 MPEG2 syntax analysis according to DVB standard

O available

not applicable

3) Requires EFA-B4 or EFA-B30

4) Requires models EFA.50/53 or option EFA-B20 + EFA-K22

 SDTV decoding, 625L or 525L supported, SDI output, PAL / SECAM / NTSC video out

6 MHz SAW Filter EFA-B11

- Adjacent-channel rejection
- Meets US requirements

8 MHz SAW Filter EFA-B13

- Adjacent-channel rejection
- Meets European and US standards, recommended for spectrum measurements

2 MHz SAW Filter EFA-B14

- Adjacent-channel rejection
- Meets channel return requirements (in cable applications)

DVB-C Firmware EFA-K21

- Analysis, demodulation and monitoring of DVB-C signals according to ETS 300 429 standard
- Included in basic EFA 60/63 models

ATSC/8VSB Firmware EFA-K22

 Analysis, demodulation and monitoring of ATSC/8VSB signals according to ATSC Doc. A/53

- Included in basic EFA 50/53 models
- Additional SMPTE310M MPEG2 TS output

ITU-T J.83/B Firmware EFA-K23

- Analysis, demodulation and monitoring of American digital cable signals according to ITU-T J.83/B standard
- Included in basic EFA 70/73 models

FIR Coefficient Readout Firmware EFA-K25

- Calculation of FIR filter coefficients for linear precorrection of digital signals
- Only available for the ATSC/8VSB models

Analog option

M/N NTSC/BTSC Demodulator EFA-B30

- Meets FCC requirements (group delay correction)
- Switchable sound trap
- Switchable group delay correction
- Switchable synchronous or envelope detector
- Integrated BTSC/MTS decoder
- Retrofit of digital instruments

EFA models 50/53 - all measurement functions for ATSC digital TV standard

EFA 50/53 characteristics

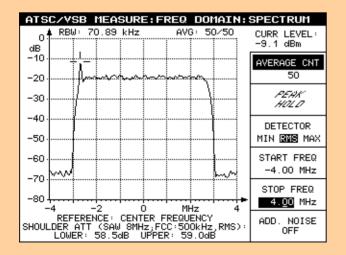
The ATSC/8VSB Test Receiver EFA, fully compatible with the ATSC Doc. A/53 standard, receives, demodulates, decodes and analyzes 8VSB (eight-level vestigial sideband) signals. All key parameters for demodulating the received signal can be automatically or manually selected:

- 8VSB modulation
- Trellis decoder (code rate 2/3)
- Fixed symbol rate for normal use (10.762238 Msymbols/s)
- Variable symbol rate for special modulator tests and lab analysis (2 Msymbols/s to 11 Msymbols/s)
- Reed-Solomon error correction 207/187/10
- Optional SAW filter bandwidths:
 6 MHz, 8 MHz and 2 MHz
- Input of any IF frequency with the aid of the EFA-B3 option: frequency range continuously tunable from 5 MHz to 1000 MHz
- Special function: invert spectrum feature

Features

The new test receiver, even the basic version, features a wide range of innovative measurement functions, allowing comprehensive, in-depth signal analysis. In addition to measuring general parameters (Fig. 1) such as bit error ratio (BER), more thorough analysis includes:

- I/Q constellation diagrams (Fig. 2) with user-selectable number of symbols to be displayed, range: 1 to 999 999 999 symbols
- Frequency spectrum, including automatic shoulder attenuation measurement to FCC recommendation (Fig. 3),
- Complex channel transmission function (Fig. 4)
- Received echo signals (ghost pattern, Fig. 5)
- Histogram I (Fig. 6) with user-selectable number of symbols to be displayed, range: 1 to 999 999 999 symbols
- Modulation error ratio (MER), error vector magnitude (EVM), phase jitter and signal-to-noise ratio (Fig. 7)
- Linearity analysis from amplitude distribution histogram and CCDF referred to the RF signal (Figs 8 and 9)


- History function: long-term monitoring of transmission parameters (Fig. 10)
- Alarm monitoring window (Fig. 11) and alarm statistics (Fig. 12)
- Permanent MPEG2 transport stream demodulation (independent from the selected measurement task)
- Integrated noise generator

Any failures and degradations are immediately visible in the constellation diagram. Effects of interest can be located more precisely by varying the number of symbols represented. The integrated spectral analysis function enables simple examination of the signal type and its spectrum. One can see immediately, for example, whether there is a marked frequency offset, or if the pilot carrier level matches the specification. An optional filter with 8 MHz channel bandwidth covers spectral components outside the 6 MHz user channel while effectively suppressing more distant components. The shoulder attenuation according to the FCC recommendation can be measured with this optional 8 MHz SAW filter.

f	ATSC/VS	B MEASURE					
CENTER FREQ 90.00 MHz	CHANNEL	ATTEN : 35 dB -5.2 dBm					
MODULATION: FREQUENCY:		8VSB	CONSTELL DIAGRAM				
SET CENTER FR SET PILOT FRE PILOT FREQ OF	QUENCY	90.000 MHz 87.309 MHz -0.251 kHz	FREQUENCY DOMAIN				
SET SYMBOL RA SYMBOL RATE O		10.762 MSymb∕s 1.4 ppm	TIME DOMAIN				
BER: BER BEFORE RS BER AFTER RS		10 (8K80/10K0) 9 (7K22/10K0)	VSB PARA- METERS				
TS BIT R	ATE 19.39	3 MBit∕s	ADD. NOISE OFF				

ATSC/VSB	MEASURE: CONSTELL	DIAGRAM
	DOO SYMBOLS PROCESSED	CURR LEVEL: -9.1 dBm
		SYMBOL CNT 10000
		HOLD
		FREEZE ON OFF
		CONST DIAG HISTOGRAM I HISTOGRAM Q
	49-17 mm	ADD. NOISE OFF

Fig. 1: Measurement menu

All parameters for the demodulated ATSC/8VSB channel are displayed on a single screen and can be checked at a glance:

- Level of the input signal
- Two BERs (bit error ratio) before and after Reed-Solomon decoder — provide a fast quality overview of the demodulated signal
- Pilot frequency offset
- Symbol rate offset

Hint: When required, the internal noise generator can be activated to perform END (equivalent noise degradation) or noise margin measurements which are based on the BER measurement.

Fig. 2: Constellation diagram

The constellation diagram is always the best way to represent digital modulation. It is also the best visual tool for interpreting measurement results such as pilot amplitude error. For in-depth analysis, adjustment of the displayed number of symbols is possible (10 000 symbols are shown in this example).

Fig. 3: Spectrum analysis

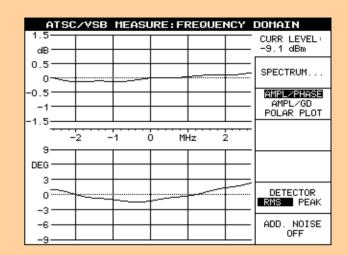
Thanks to this integrated feature, a separate spectrum analyzer is not required anymore.

All basic spectrum analyzer functions are provided: start/stop frequency (or center/span) and several detection and averaging modes.

The automatic shoulder attenuation measurement (strictly compliant to FCC recommendations) makes checking the performance of any ATSC/8VSB transmitter a child's play.

ATSC/8VSB

Fig. 4: Amplitude and phase frequency response


The coefficients of the equalizer are used to display the amplitude and phase frequency response (shown here), the group delay (not shown here) and the polar plot representation. In the 8VSB demodulation chain, the equalizer compensates for frequency, phase and delay degradation that may have been introduced during the 8VSB transmission. It is then easy for the EFA to output the amplitude response, phase response and group delay, displaying the equalizer coefficients over the frequency by means of FFT.

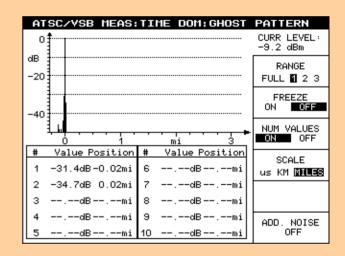
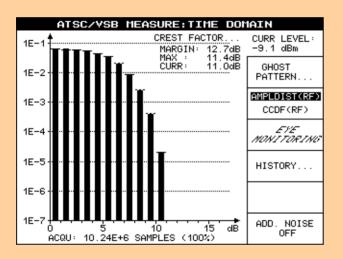

The polar plot representation — which is the complex representation of amplitude and phase — may also help to interpret very short echoes (that are difficult to visualize on the ghost pattern).

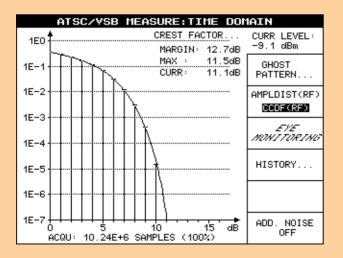
Fig. 5: Ghost pattern

The ghost pattern measurement allows the main ATSC/8VSB signal (0 dB relative), echoes and pre-echoes to be visualized and measured (numeric values).

The range function allows the visualization of the short echoes that may occur in urban areas (reflections from buildings). The units of the X axis and of the numeric values can be changed from μ s to km or even miles, depending on the application.

ATSC/VSB MEASURE: CONSTELL DIAGRAM 1.24846E+07 SYMBOLS PROCESSED CURR LEVEL: -9 1 dBm 124 128 124 124 124 124 124 124 128 124 1F-1 SYMBOL CNT INFINITE der HOLD 1E-3 1E-FREEZE ON I OFF CONST DIAG 1E-5 HISTOGRAM Q 1E-6 SCALE LIN LOG 1E-7 ADD. NOISE OFF


Fig. 6: Histogram I


Histogram I represents the distribution of the eight-level vestigial sideband modulation (8VSB) on the X axis, and can be expressed in a linear or logarithmic scale.

It allows an estimate of the interferer's origin (interferer, Gaussian noise, etc).

Hint: Check the position of the sync pulse (±5), and check the impact on the distribution.

ATSC/VSB	MEASUR	E: YSB PARAM	ETERS
CENTER FREQ 751.00 MH z	CHANNEL	ATTEN : LOW+P -1.0 dBm	
TRANSMISSIO			CONSTELL DIAGRAM
PHASE JITTER SIGNAL/NOISE		0.27 ° 48.1 dB	FREQUENCY DOMAIN
SUMMARY: MOD ERROR RAT MOD ERROR RAT	IO (MIN)	26.1 dB	TIME DOMAIN
ERROR VECTOR ERROR VECTOR			VSB PARA PILOT VALUE.
			ADD. NOISE OFF

Fig. 7: 8VSB modulation parameters

All 8VSB parameters are calculated from the constellation diagram:

- Phase jitter
- Signal-to-noise ratio
- MER (modulation error ratio), RMS and Min
- EVM (error vector magnitude), RMS and Max...
- ... and the pilot parameters (not shown here):
- Pilot value
- Data signal to pilot ratio
- Pilot amplitude error

Fig. 8: Amplitude distribution function

The measurement function for displaying the amplitude distribution or the CCDF (complementary cumulative distribution function) is used to detect nonlinear distortion.

The frequency distribution of the 8VSB signal is divided into several 1 dB windows to determine the amplitude distribution. Information on the crest factor is obtained from the frequency distribution and displayed in the upper right-hand corner of the graph. The reference values are marked by short horizontal lines.

Fig. 9: Complementary cumulative distribution function (CCDF)

In contrast to the amplitude distribution, each trace point indicates how often a certain voltage level is attained or exceeded. The ideal frequencies are displayed as short, horizontal lines at 1 dB intervals (reference values) so that the amplitude distribution of the applied signal can be compared with that of an ideal 8VSB signal. Any deviation from the ideal distribution is then identified by the deviations of the column heights and the value of the crest factor, for example due to clipping in the transmitter output stage.

Fig. 10: History function

This measurement is just what is required for long-term ATSC/ 8VSB transmitter monitoring and does not require any additional tools.

The key parameters (level, synchronization information, MER/dB, MER/%, EVM/%, BER before and after Reed-Solomon decoder, synchronization and MPEG2 TS data error) are, therefore, displayed in graphical form. This mode can also display all values numerically (average, max, min, current). BER and level measurements run continuously and are independent of other measurements. The user can configure a monitoring interval from 60 seconds (shown here) to 1000 days.

Fig. 11: Monitoring/Alarm register

The EFA checks the input level (LV), 8VSB synchronization (SY), modulation error ratio (ME), error vector magnitude (EM), bit error ratio before Reed-Solomon decoder (BR) and MPEG2 data errors (DE) of the 8VSB signal at a rate of once per second.

All alarm messages are stored in the alarm register together with the date and time.

Up to 1000 entries can be stored.

ATSC/VSB MEASURE: TIME DOMAIN: HISTORY CURR LEVEL: -9.0 dBm LVL/ dBm CONFIG 2nd SCREEN... -7 -8 FREEZE -9 -10. 30 40 10 2nt/s 60 AVERAGE 45 MAX MIN MAX&MIN vЛ MER/ 40 INTERVAL.. 1 MINUTE(S) 35 RESTART 30 ADD. NOISE OFF ERR

		AT	SC/Y	SB	AL	AR	M		
	ENTER FREG 39.00 Mi		ANNEL 50		TEN 15.		LOW dB		
NO	DATE 18.04.01	TIME 17:01		SY	ALA ME		BR	DE	REGISTER CLEAR
999 0	18.04.01	16:57	58 RE	GIST	ER	CLE	EARE	ED	THRESHOLD
2	18.04.01 18.04.01 18.04.01	17:00	20 LV		 	 EV			CONFIG
4	18.04.01 18.04.01 18.04.01	17:01	04 LV		ME	E٧		DE 	LINE Newest Man
7	18.04.01 18.04.01	17:01	12 LV		ME	E٧	BR	DE	PRINT
-	18.04.01 18.04.01								STATISTICS

ATSC/	VSB ALA	RM:STATISTI	ICS
CENTER FREQ 689.00 MHz	CHANNEL 50	ATTEN : LOW+P -16.1 dBm	
MONITORING TIM	E	000000:04:45	
LEVEL		: 000000:02:24	
		: 000000:01:24 : 000000:01:55	
		000000:01:55	
		: 000000:01:28 : 000000:01:26	
CORR CNT BEFOR	E RS	N =	1889155
MPEG DATA ERRO	R CNT AFT	ERRS N =	58738
			REFRESH

Fig. 12: Statistics function

The alarm messages can be called up at a keystroke (in the alarm menu), providing the user with an overview of downtimes.

Typical applications

EFA-ATSC/8VSB for production of modulators and transmitters

The EFA's analysis capabilities permit indepth testing of the transmitter's performance thanks to the outstanding MER/EVM dynamic range, amplitude distribution measurement and spectrum analysis - integrating the automatic shoulder attenuation measurement according to FCC recommendations.

Monitoring of ATSC/8VSB transmitters and transposers

The EFA is the perfect solution for monitoring ATSC/8VSB signals. An alarm is triggered if one of the selected parameters exceeds the set threshold (all thresholds can be individually configured): incident level, ATSC/8VSB synchronization, MER (modulation error ratio), EVM (error vector magnitude), BER before Reed-Solomon decoder and MPEG2 TS data error can be checked in realtime independently of other measurements and decoding. If an error occurs, a 1000-line register is available for recording the date, time and description of the event.

EFA ATSC/8VSB as relay receiver

For this special application, the EFA is simply optimized for reception at a keystroke — adding a special filter in order to remove any analog M/N co-channel interferers. This allows reception even under adverse operating conditions. The user is also able to configure the bandwidths of the main amplitude- and phasecontrolled loops.

EFA as a multistandard digital and analog platform

Since the analog terrestrial standard M/N is still in use, and broadcasters need a future-proof solution for their short- and long-term investment based on an EFA ATSC/8VSB receiver, an analog M/N NT-SC/BTSC demodulator can optionally be implemented. It covers all application areas from R&D to field measurements. Furthermore, to protect your investment. the unit can be updated by means of options to demodulate and analyze the ITU-T J.83/B and DVB-C digital cable standards. These unique features make the new EFA family members THE measurement devices for the present and the future.

Summary of measurements required for the vario	ous ATSC/8VSB applications
--	----------------------------

ATSC/8VSB application	Level	BER	MER/EVM	SNR	Pilot parameters	Phase jitter	Constellation diagram	Frequency spectrum - shoulder attenuation	Amplitude (f) - phase (f) - group delay (f)	Amplitude distribution - CCDF	Ghost pattern	History	Alarm	Statistics
Production of modulators and transmitters	~	~	~	~	~	~	~	~	~	!	~	~		
Transmitter installation	r	~	r		~		r	!	r			~		
Coverage measurement of terrestrial signals	v	ļ	v				~	r			v	~	v	~
Monitoring of TV transmit- ters and transposers	v	r	r		r		r			r	r	!	r	>
Research and development	~	~	!	r	r	~	r	r	~	~	~	~		
Service	r	~	~	r	r	~	ļ	r	~	~		~	~	~

most important measurement

✓ required measurement

ITU-T J.83/B

EFA models 70/73 - all measurement functions for ITU-T J.83/B digital CATV standard

Besides the deployment of the worldwide digital terrestrial TV network and the already established digital video broadcasting over satellite, digital cable TV still represents an alternative for many consumers worldwide. Additionally, cable technology provides a return channel within the same physical layer (coax cable), allowing the consumer to send back information to the cable headend for versatile applications (full Internet access, video-on-demand and more). The boundary between data communications and TV networks has never been so narrow!

EFA 70/73 characteristics

Fully compatible with the ITU-T J.83/B standard, the EFA 70/73 models receive, demodulate, decode and analyze 64 QAM or 256 QAM (quadrature amplitude modulated) signals. All key parameters for demodulating the received signal can be automatically or manually selected:

- 64 QAM or 256 QAM modulation
- Trellis decoder (code rate 14/15 for 64 QAM and 19/20 for 256 QAM)
- Fixed symbol rate for normal use (5.056941 Msymbols/s for 64 QAM and 5.360537 Msymbols/s for 256 QAM)

- Variable symbol rate for special modulator tests and lab analysis (1 Msymbols/s to 6999 Msymbols/s)
- Reed-Solomon error correction 128/122/3
- Optional SAW filter bandwidth: 6 MHz, 8 MHz and 2 MHz
- Input of any IF frequency with the aid of the EFA-B3 option: frequency range continuously tunable from 5 MHz to 1000 MHz
- Special function: invert spectrum feature

Features

The new test receiver, even the basic version, features a wide range of innovative measurement functions, allowing comprehensive, in-depth signal analysis. In addition to measuring general parameters (Fig. 13) such as bit error ratio (BER), more thorough analysis includes:

- I/Q constellation diagrams (Fig. 14) with user-selectable number of symbols to be displayed, range: 1 to 999 999 999 symbols
- I/Q parameters, modulation error ratio (MER), error vector magnitude (EVM), phase jitter and signal-to-noise ratio (Fig. 15)

- Frequency spectrum (Fig. 16)
- Complex channel transmission function (Fig. 17)
- Received echo signals: echo pattern (Fig. 18)
- Histogram I (Fig. 19) and Q (Fig. 20) with user-selectable number of symbols to be displayed, range: 1 to 999 999 999 symbols
- Linearity analysis from amplitude distribution histogram and CCDF referred to the RF signal (Figs 21 and 22)
- History function: long-term monitoring of transmission parameters (Fig. 23)
- Alarm monitoring window (Fig. 24)

Any failures and degradations are immediately visible from the constellation diagram. Effects of interest can be located more precisely by varying the number of symbols represented. The integrated spectral analysis function enables simple examination of the signal type and its spectrum.

	J.83/B	MEASURE	
SET RF 689.00 MHz	CHANNEL 50	ATTEN : LOW+P -9.4 dBm	
MODULATION: FREQUENCY:		64QAM	CONSTELL DIAGRAM
FREQUENCY OFF SET SYMBOL RA SYMBOL RATE C	TE	0.275 kHz 5.057 MSymb/s 4.4 ppm	FREQUENCY DOMAIN
BER: BER BEFORE RS		10 (1K02/10K0)	TIME DOMAIN
BER AFTER RS		(2K44/10K0)	QAM PARA- METERS
			RESET BER
TS BIT R	ATE 26.97	1 MBit/s	ADD. NOISE OFF

	J	.8	3/	ΈB	ň	Eŕ	ìS	UR	Έ	: C	ON	S	ΠΞ	LL		DIAGRAM
					10	00	0 :	SYI	1B0)LS	P	RO	CE	SSE	ED	CURR LEVEL:
	•	٠	-	·	-		,	•	•	+	•	•	•	•	·	9.1 dBm
٠	۲	•	·	•	•	•	·	•	•	~	1	,	·	•	•	SYMBOL CNT
•	•	-	-	-	٠	·	·	•	-	•	Ŀ	•	-	-	•	10000
۸.	·	٠	٠	·	•	·	٠	٠	٠	د	•	•	•	•		
•	٠	٠	•	٠	•	·	·	•	-	·		•	٠	~	٠	HOLD
٠	••	•	•	ŀ	ŀ	-	ŀ	~	۰	•	-		۰	•	٠	
·	·	١	•	ŀ	ŀ	•	-	ŀ	•	·	٠	r	۲	•	•	FREEZE
•	٠	·	•	٠	·	•	3	•	·	·	-	·	٦	·	٠	ON OFF
•	·	•	ŀ	•	ŀ	ŀ	•	·	·	·	•	-	,	·	•	CONST DIAG
٠	۰.	ŀ	٠		•	•	•	·	•	·		٠	٠	•	٠	HISTOGRAM I
·	•	٠	•	ŀ	ŀ	ŀ	·	·	-	·	·	·	·	·	,	HISTOGRAM Q
۱	•	ŀ	*	•	•	•	•	ŀ	ŀ	•	•	•	٠	•	٠	
,	I.	·	٠	·	•	•	•	·	•	·	٠	•	·	,	٠	
•	·	٠	ŀ	-	·	·	·	·	·	-	•	•	-	·	٠]
•	·	·	٠	•	·	·	•	٠	•	•	*	+	•	٠	·	ADD. NOISE
ι	4	٠	-	٠	•	•	-	•	•	••	7	•	٠	۲	·] OFF

J.83/B	MEASURE	QAM PARAME	TERS								
SET RF 213.00 MHz	CHANNEL	ATTEN : 25 dB -17.6 dBm									
MODULATION:											
I∕Q AMPL IMBA I∕Q QUADRATUR CARRIER SUPPR	E ERROR	0.04 °	FREQUENCY DOMAIN								
TRANSMISSIO PHASE JITTER SIGNAL/NOISE	(RMS)	0.10 ° 45.65 dB	TIME DOMAIN								
SUMMARY:											
MER (RMS) MER (MIN)		44.23 dB 31.07 dB									
EVM (RMS) EVM (MAX)		< 0.4 % 1.72 %	ADD. NOISE OFF								

Fig. 13: Measurement menu

All parameters for the demodulated ITU-T J.83/B channel are displayed on a single screen and can be checked at a glance:

- Level of the input signal
- Two BERs (bit error ratio) before and after Reed-Solomon decoder — provide a fast quality overview of the demodulated signal
- Demodulated symbol rate
- Symbol rate offset

Hint: When required, the internal noise generator can be activated to perform END (equivalent noise degradation) or noise margin measurements which are based on the BER measurement.

Fig. 14: Constellation diagram

The constellation diagram is always the best way to represent digital modulation. It is also the best visual tool for interpreting measurement results like I/Q amplitude imbalance or carrier suppression. For in-depth analysis, adjustment of the displayed number of symbols is possible (10 000 symbols are shown in this example).

Fig. 15: QAM modulation parameters

All QAM parameters are calculated from the constellation diagram:

- I/Q amplitude imbalance
- I/Q phase error
- Carrier suppression
- Phase jitter
- Signal-to-noise ratio
- MER (modulation error ratio), RMS and Min
- EVM (error vector magnitude), RMS and Max

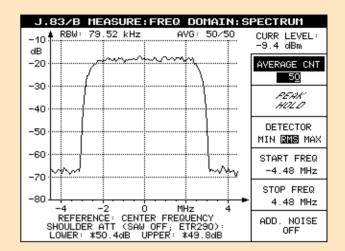
ITU-T J.83/B

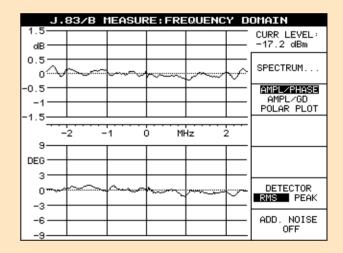
Fig. 16: Spectrum analysis

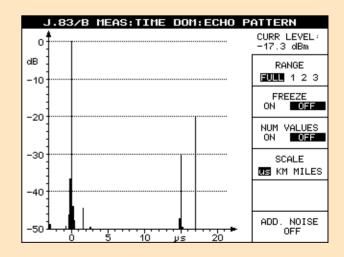
Thanks to this integrated feature, a separate spectrum analyzer is not required anymore.

All basic spectrum analyzer functions are provided: start/stop frequency (or center/span) and several detection and averaging modes.

Fig. 17: Amplitude and phase frequency response

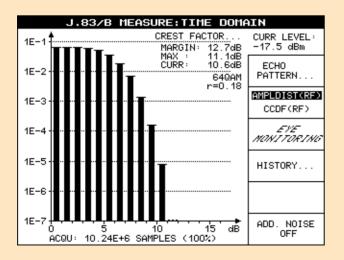

The coefficients of the equalizer are used to display the amplitude and phase frequency response (shown here), the group delay (not shown here) and the polar plot representation. In the ITU-T J.83/B demodulation chain, the equalizer compensates for frequency, phase and delay degradation that may have been introduced during the QAM transmission. It is then easy for the EFA to output the amplitude response, phase response and group delay, displaying the equalizer coefficients over the frequency by means of FFT.


The polar plot representation — which is the complex representation of amplitude and phase — may also help to interpret very short echoes (that are difficult to visualize on the echo pattern).


Fig. 18: Echo pattern

The echo pattern measurement allows the main QAM signal (0 dB relative), echoes and pre-echoes to be visualized and measured (numeric values).

The range function allows the visualization of the reflections. The units of the X axis and of the numeric values can be changed from μ s to km or even miles, depending on the application.



	J.8	37B	MEA	ASU	RE:	CONS	STEL	L D1	AGRAM
. 12-	. 125	1.000)00E+(. 125].			LS P . 125			CURR LEVEL: 89.5 dBuV
den-									SYMBOL CNT 10000000
.08									HOLD
.06									FREEZE ON OFF
.04									CONST DIAG HISTOGRAM I HISTOGRAM Q
.02									SCALE
.00									ADD. NOISE OFF

	J.E	37E	3 ME	ASU	RE:	CONS	TELL	DI	AGRAM
1E-1	. 125	1.00	000E+	06 S . 125	YMB0	LS PR . 125	ROCESSE 125 . 12	:D 25	CURR LEVEL: 89.5 dBuV
		 		·					SYMBOL CNT 1000000
den		····		····	···· · ···	····	··· H ··· H ···		HOLD
1E-3-				··· / [· · · · · · · · · · · · · · · · · · ·				FREEZE ON OFF
1E-4-			····)·· ····			· · · · · · · · · · · ·			CONST DIAG HISTOGRAM I
1E-5-		 		 	 		· · · · · · · · ·	 	SCALE LIN LOG
1E-6₁ _{	/ 	. . 6 –							ADD. NOISE OFF

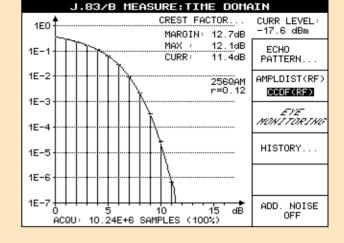
Fig. 19: Histogram I

Histogram I represents the distribution of the quadrature amplitude modulated (QAM) signal on the X axis (I for inphase), and can be expressed in a linear or logarithmic scale. It allows an estimate of the interferer's origin (interferer, Gaussian noise, etc). Linear scaling is used in this plot.

Fig. 20: Histogram Q

Same representation as Fig. 15 — but referring to the distribution of the Q component projected on the X axis (Q for quadrature). Logarithmic scaling is used in this plot.

Fig. 21: Amplitude distribution


The measurement function for displaying the amplitude distribution or the CCDF (complementary cumulative distribution function) is used to detect nonlinear distortion.

The frequency distribution of the QAM signal is divided into several 1 dB windows to determine the amplitude distribution. Information on the crest factor is obtained from the frequency distribution and displayed in the upper right-hand corner of the graph. The reference values are marked by short horizontal lines.

ITU-T J.83/B

Fig. 22: Complementary cumulative distribution function (CCDF)

In contrast to the amplitude distribution, each trace point indicates how often a certain voltage level is attained or exceeded. The ideal frequencies are displayed as short, horizontal lines at 1 dB intervals (reference values) so that the amplitude distribution of the applied signal can be compared with that of an ideal QAM signal. Any deviation from the ideal distribution is then identified by the deviations of the column heights and the value of the crest factor, for example due to clipping in the modulator output stage.

J.83/B MEASURE: TIME DOMAIN: HISTORY CURR LEVEL -9.5 dBm LVL/ dBm -7 CONFIG 2nd SCREEN.... -8 -9 FREEZE N OFF пŃ -10. 10 30 40 60 20 t/s AVERAGE 50 MAX MIN MAX&MIN MER/ dB 40 INTERVAL... 1 MINUTE(S) 30 RESTART 20 ADD. NOISE OFF

J.83/B ALARM													
21	SET RF I 3.00 M	CHANNE 13	1		TEN 17.								
NO	DATE 02.08.01 17		TIME :09:55	L٧	SY	ALA ME		BR	DE	REGISTER CLEAR			
	02.08.01 02.08.01			 		МЕ 	EV 		 	THRESHOLD			
38	02.08.01 02.08.01 02.08.01	17	:09:13							CONFIG			
40	02.08.01 02.08.01 02.08.01	17	:09:21						 DE	LINE Newest Man			
43	02.08.01 02.08.01	17	:09:29			ME	E۷			PRINT			
	02.08.01 02.08.01					МЕ 	EV 			STATISTICS			

Fig. 23: History function

This measurement is just what is required for long-term ITU-T J.83/B modulator monitoring in cable headends, and does not require any additional tools.

The key parameters (level, synchronization information, MER/dB, MER/%, EVM/%, BER before and after Reed-Solomon decoder and MPEG2 TS data error) are, therefore, displayed in graphical form. This mode can also display all values numerically (average, max, min, current). BER and level measurements run continuously and are independent of other measurements.

Fig. 24: Monitoring/Alarm register

The EFA checks the input level (LV), QAM synchronization (SY), modulation error ratio (ME), error vector magnitude (EV), bit error ratio before Reed-Solomon decoder (BR) and MPEG2 data errors (DE) of the ITU-T J.83/B signal at a rate of once per second. All alarm messages are stored in the alarm register together with the date and time.

Up to 1000 entries can be stored.

Typical applications

EFA for production of modulators

The EFA's analysis capabilities permit indepth testing of the cable modulator's performance thanks to the outstanding MER/EVM dynamic range, amplitude distribution measurement and spectrum analysis. Another feature is the Equalizer ON/FREEZE/OFF function, which is mandatory during the alignment phase of the modulators. Finally, the high accuracy and repeatability of the measurements makes the EFA ideally suited for the production of QAM modulators.

Cable headend monitoring

The capability of the EFA to handle multichannel reception with the spectrum measurement and the history functions (graphical measurement representation versus time) permit the unit to monitor cable headends. In addition, an alarm is triggered if one of the selected parameters exceeds the set threshold (all thresholds can be individually configured). Incident level, QAM synchronization, MER (modulation error ratio), EVM (error vector magnitude), BER before Reed-Solomon decoder and MPEG2 TS data error can be checked in realtime independently of other measurements and decoding. If an error occurs, a 1000-line register is available for recording the

date, time and description of the event.

EFA in research and development labora-tories

Thanks to the highquality frontend design, the dynamic range of the modulation error ratio measurement (MER dynamic range better

than 41 dB) allows the unit to be used as a reference demodulator in research and development laboratories.

EFA as a multistandard digital and analog platform

Since the analog standard M/N is still heavily in use, and broadcasters need a future-proof solution for their short- and long-term investment, an analog M/N NTSC/BTSC demodulator can optionally be implemented. It covers all application areas from R&D to cable headend measurements. Furthermore, to protect your investment, the unit can be updated by means of options to demodulate and analyze the ATSC/8VSB digital terrestrial and DVB-C digital cable standards. These unique features make the new EFA family members THE measurement devices for the present and the future.

ITU-T J.83/B application	Level	BER	I/Q parameters	SNR	Phase jitter	MER/EVM	Constellation diagram Histograms	Frequency spectrum	Amplitude (f) - phase (f) - group delay (f)	Amplitude distribution - CCDF	Echo pattern	History	Alarm	Statistics
Production of modulators	~	~	~	~	~	ļ	~	~	~	~				
Cable headend monitoring	~	~				r	~	1			~	!	~	~
Research and development	~	~	~	~	~	r	ļ	1	r	~	~	~		
Service	~	~	~			r	ļ	~				~	~	~
most important m	most important measurement													

Summary of measurements required for the various ITU-T J.83/B applications

Analog TV

EFA models 90/93 - new high-end M/N TV demodulator

Rohde & Schwarz provides a high-end measurement device that can cover all application areas from R&D to field measurements. This EFA model was created to offer the best performance and the most useful features to test standard M/N transmitters under optimal conditions. To accomplish this, a sound trap filter has been integrated in the unit as well as synchronous and envelope detectors, a BTSC audio decoder and additional features!

To further protect your investment, the unit can be updated by means of options to demodulate and analyze the upcoming digital TV standards ATSC/8VSB and ITU-T J.83/B. These unique features make the new EFA family members THE measurement devices for the present and the future!

EFA 90/93 characteristics

Fully compatible with the FCC standard, the EFA 90/93 models receive and demodulate any analog TV signals to standard M/N (NTSC/BTSC and PAL). All key parameters for demodulating the received signal can be automatically or manually selected:

- Switchable video bandwidth (sound trap)
- Switchable group delay correction
- Switchable envelope or synchronous (5 different modes) detector
- Demodulation using intercarrier method
- Balanced audio outputs
- Measurement functions for
 - vision/sound carrier power ratio
 - FM sound carrier and pilot deviation
- Measurement of video modulation depth and residual picture carrier
- Input of any IF frequency with the aid of the EFA-B3 option: frequency range continuously tunable from 5 MHz to 1000 MHz
- Special function: invert spectrum feature (with option EFA-B3)

Features

The EFA models 90/93 provide high-precision demodulated baseband signals (vision and sound) for measurements in various applications (TV transmitters, cable headends, coverage measurements, R&D). At the same time, all relevant RF parameters are measured at high speed and represented in a logically arranged way (Fig. 25). User-configurable alarm messages permit unattended monitoring of the received signals as well as switchover to alternative links in the event of a failure.

The high-end demodulator version is used for on-site measurements on TV transmitters. This version offers particularly lowdistortion demodulation of the broadcast signal. It is perfectly suited for these types of measurements; its low measurement uncertainty permits optimal alignment as well as permanent quality control of the transmitter.

Fig. 25: Measurement window

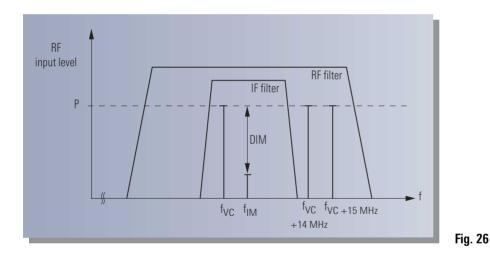
All parameters for the demodulated standard M/N TV channel are displayed on a single screen and can be checked at a glance:

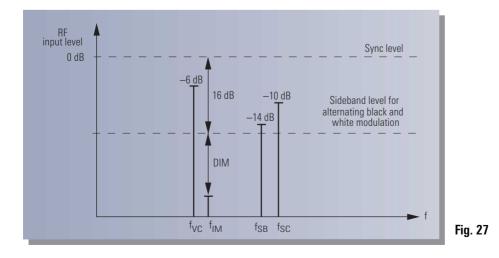
- Vision carrier level
- Video modulation depth
- Bar/sync/video amplitudes (expressed in IRE)
- Vision/sound level ratio
- Main and BTSC channel FM deviation
- FM deviation of MTS pilot
- Sound mode indication (Mono, Stereo, SAP)

NTSC/BTSC MEASURE														
SET RF 61.25 MHz	CHANNEL 3	ATTEN : 90.7	20 dB d BuV	Ş	STANDARD									
VISION CARRIER:														
LEVEL			90	.7	dBuV									
MODULATION	DEPTH		68	.9	2									
BAR AMPLIT			79.2 IRE											
SYNC AMPLI			31.0 IRE											
VIDEO AMPL	ITUDE		110	.2	IRE									
SOUND CARR	IER:													
VISION / S	OUND CARF	RIER RATI	0 12	9	dB									
FM DEVIATI	ON MAIN C	HANNEL	31	. 1	kHz									
FM DEVIATI	ON BTSC C	HANNEL	44	.8	kHz									
FM DEVIATI	ON MTS PI	LOT	5.3	38	kHz									
MULTICHANN	EL TV SOU	JND	STEREO	+	SAP									

Specification of intermodulation

In-channel distortion


In-channel distortion is determined by means of a modulated TV signal with a vision carrier (f_{VC}), a colour subcarrier (f_{SB}) and a sound carrier (f_{SC}). Modulation is chosen such that the vision carrier is lowered by 6 dB, the colour subcarrier by 14 dB and the sound carrier by 10 dB relative to the sync pulse level. The level of the intermodulation product is measured at the video output relative to the black-to-white transition of the video signal. Fig. 26 shows the signals involved and the reference level at the RF.


Out-of-channel distortion

The effect of signals outside the received channel is described by the 3rd-order intercept point (TOI). For the EFA family, this parameter is specified on the basis of a three-tone measurement with the following signals: a wanted carrier at the receive frequency f_{VC} and two unwanted carriers 14 MHz and 15 MHz above the receive frequency.

The unwanted frequencies are chosen to be within the bandwidth of the RF preselection but outside the bandwidth of the first IF filter. The effect of out-of-channel interference on the receiver can thus reliably be determined. It is assumed that each of the three signals has a level P = -33 dBm. The level of the intermodulation product Δ IM 1 MHz relative to the wanted carrier is measured (see Fig. 27, measurement at the RF). The 3rd-order intercept point is:

 $TOI/dBm = P/dBm + \frac{\Delta/M/dB}{2} + 3$

ATSC/8VSB characteristics (specific to EFA models 50/53 or EFA-B20 + EFA-K22)

	Standard test receiver	High-end test receiver with option EFA-B3	High-end demodulator
RF input	selective	selective ¹⁾	non-selective
Connector	50 Ω or 75 Ω , BNC or N female, front or rear panel	50 Ω , N female, rear panel and 75 Ω , BNC female, rear panel	50 Ω , N female, rear panel
Return loss	≥14 dB in channel with 50 Ω connector and input attenuation ≥10 dB ≥12 dB in channel with 75 Ω connector and input attenuation ≥10 dB	≥17 dB (>20 dB typ.) in channel with 50 Ω connector ≥14 dB (>17 dB typ.) in channel with 75 Ω connector	≥30 dB
Frequency range ²⁾	48 MHz to 862 MHz	4.5 MHz ³⁾ to 1000 MHz	45 MHz to 1000 MHz
Level range ⁴⁾	-71 dBm to +20 dBm (low distortion, preamplifier = OFF) -75 dBm to +20 dBm (low noise, preamplifier = OFF) -80 dBm to +13 dBm (low noise, preamplifier = ON)	–78 dBm to +20 dBm (normal) ⁵⁾ –77 dBm to +20 dBm (low distortion) ⁵⁾ –80 dBm to +16 dBm (low noise) ⁵⁾	—50 dBm to +20 dBm
Noise figure	12 dB typ. (low noise) 7 dB typ. (low noise, preamplifier = ON)	9 dB typ. (normal) ⁶⁾ 7 dB typ. (low noise) ⁶⁾ 11 dB typ. (low distortion) ⁶⁾	
Image frequency rejection	\geq 70 dB (VHF) and \geq 50 dB (UHF)	100 dB	
IF rejection		100 dB	
Local oscillator			
Resolution	1 Hz	1 Hz	1 Hz
Frequency error	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶
Phase noise 7)	≥50 dB	≥58 dB	≥62 dB ⁸⁾
SSB phase noise (RF = 860 MHz)	typ. —82 dBc /Hz at 1 kHz typ. —90 dBc /Hz at 10 kHz	typ. —91 dBc /Hz at 1 kHz typ. —100 dBc /Hz at 10 kHz	typ. –93 dBc /Hz at 1 kHz typ. –106 dBc /Hz at 10 kHz
System performance			
MER	≥40 dB ⁹⁾	≥41 dB ¹⁰⁾	≥42 dB ¹¹⁾
EVM	≤0.66 % ⁹⁾	≤0.59% ¹⁰⁾	≤0.52% ¹¹⁾
SNR	≥42dB ⁹⁾	≥43 dB ¹⁰⁾	≥44 dB ¹¹⁾

¹⁾ The selective RF inputs of the high-end TV test receiver (with option EFA-B3) are additional to the non-selective RF input of the high-end demodulator. For specifications involving the non-selective RF input see the high-end demodulator column.

²⁾ Center frequency.

³⁾ For frequencies < 10 MHz: group delay tilt increases up to 200 ns, amplitude tilt increases up to 0.7 dB pp typ., minimum input level: -30 dBm, SAW filter ON.

⁴⁾ For quasi error-free MPEG2 transport stream.

⁵⁾ At low input frequencies such as 4.57 MHz: additional tilt (0.7 dB pp typ.), minimum input level: -30 dBm, SAW filter ON.

6) RF >47.15 MHz

⁷⁾ FM S/N ratio measured at IF output, referred to ±30 kHz frequency deviation and 500 Hz modulation frequency, deemphasis 50 µs, measured to DIN45405, weighted to CCIR468-3.

⁸⁾ In frequency range 45 MHz to 900 MHz.

⁹⁾ Signal power >-40 dBm, equalizer on.

¹⁰⁾ Signal power >-43 dBm, equalizer on.

¹¹⁾ Signal power >-30 dBm, equalizer on.

ATSC/8VSB common characteristics

IF input	50 $\mathbf{\Omega}$, BNC female, rear panel	
Return loss	≥20 dB in channel	
Center frequency	36 MHz	
Level range	–30 dBm to –5 dBm	
IF output	50 $\mathbf{\Omega}$, BNC female, rear panel	
Return loss	≥20 dB	
Center frequency	36 MHz	
Level, regulated	—17 dBm	
MPEG2 TS parallel output	LVDS (188 bytes)	
MPEG2 TS ASI output	serial MPEG2 transport stream (ASI); 75 Ω	
SMPTE 310M output	800 mV pp, 75 Ω (only with nominal symbol ra	ate of 10.762238 Msymbols/s)
Symbol rate	2 Msymbols/s to 11 Msymbols/s (default 10.76	62238 Msymbols/s)
Bandwidth (SAW filter)	2 MHz, 6 MHz, 8 MHz or SAW filter OFF	
Channel correction	self-adapting equalizer, equalizer freeze, equalizer off	
Measurements	signal power pilot carrier frequency offset pilot value pilot amplitude error data signal power to pilot carrier power ratio symbol rate offset MPEG2 TS bit rate	SER (segment error ratio) ¹⁾ segment errors per second ¹⁾ EVM (error vector magnitude) MER (modulation error ratio) SNR (signal/noise ratio) phase jitter crest factor
	BER (bit error ratio) before and after Reed-Solomon decoder	shoulder attenuation (referred to FCC recommendation)
Graphic displays	constellation diagram histogram I/Q frequency spectrum amplitude frequency response phase frequency response group delay frequency response	polar plot amplitude distribution (RF) CCDF (RF) eye monitoring history
Alarm messages	signal power, synchronization, EVM, MER, BEF MPEG2 data error	R before Reed-Solomon decoder,
Storage	alarm message with date and time, up to 1000) messages
Memory for instrument setup storage	0 to 4	

¹⁾ Available from April 2002.

Test parameters	Range	Resolution	Error
Signal power	depending on model, see above	0.1 dB	<3 dB, typ. <1 dB
MER (modulation error ratio)	18 dB to 30 dB 30 dB to 35 dB	0.1 dB 0.1 dB	≤0.8 dB ≤1.0 dB
MER (modulation error ratio)	1.9% to 3.2% 3.2% to 12.5%	0.01% 0.01%	≤12% of actual value ≤10% of actual value
EVM (error vector magnitude)	1.17% to 2.07% 2.07% to 8.3%	0.01% 0.01%	≤12% of actual value ≤10% of actual value
SNR (signal/noise ratio)	18 dB to 30 dB 30 dB to 35 dB	0.1 dB 0.1 dB	≤0.5 dB ≤0.8 dB
Data signal/pilot power ratio	7 dB to 19 dB	0.1 dB	≤0.2 dB (SAW filter OFF)
Pilot amplitude error	8 dB to +4 dB	0.1 dB	≤0.2 dB (SAW filter OFF)
Pilot value	0.5 to 2	0.01	≤0.03 (SAW filter OFF)
Pilot carrier frequency offset	±100 kHz	1 Hz	≤280 Hz + 2 ppm x RF
Symbol rate offset	±150 ppm	0.1 ppm	<10 ppm, typ. <3 ppm
BER before Reed-Solomon	1.0 x 10 ⁻³ to 0.1 x 10 ⁻¹⁵	0.1 x 10 ^{-exponent}	-
BER after Reed-Solomon	1.0 x 10 ⁻⁵ to 0.1 x 10 ⁻¹⁴	0.1 x 10 ^{-exponent}	-
SER (segment error ratio) ¹⁾	1.3×10^{-3} to 0.1 x 10^{-12}	0.1 x 10 ^{-exponent}	-
Segment errors/s ¹⁾	1.0 x 10 ⁻¹² to 10 x 10 ⁻³	0.1 x 10 ^{-exponent}	-

¹⁾ Available from April 2002.

ITU-T J.83/B characteristics (specific to EFA models 70/73 or options EFA-B20 + EFA-K23)

	Standard test receiver	High-end test receiver with option EFA-B3	High-end demodulator
RF input	selective	selective ¹⁾	non-selective
Connector	50 Ω or 75 Ω , BNC or N female, front or rear panel	50 Ω , N female, rear panel and 75 Ω ,BNC female, rear panel	50 Ω , N female, rear panel
Return loss	\geq 14 dB in channel with 50 Ω connector and input attenuation \geq 10 dB \geq 12 dB in channel with 75 Ω connector and input attenuation \geq 10 dB	≥17 dB (>20 dB typ.) in channel with 50 Ω connector ≥14 dB (>17 dB typ.) in channel with 75 Ω connector	≥30 dB
Frequency range ²⁾	48 MHz to 862 MHz	4.5 MHz ³⁾ to 1000 MHz	45 MHz to 1000 MHz
Level range ⁴⁾	-58 dBm to +20 dBm (low distortion, preamplifier = OFF) -62 dBm to +20 dBm (low noise, preamplifier = OFF) -67 dBm to +13 dBm (low noise, preamplifier = ON)	–66 dBm to +20 dBm (normal) ⁵⁾ –65 dBm to +20 dBm (low distortion) ⁵⁾ –68 dBm to +16 dBm (low noise) ⁵⁾	–50 dBm to +20 dBm
Noise figure	12 dB typ. (low noise) 7 dB typ. (low noise, preamplifier = ON)	9 dB typ. (normal) ⁶⁾ 7 dB typ. (low noise) ⁶⁾ 11 dB typ. (low distortion) ⁶⁾	
Image frequency rejection	\geq 70 dB (VHF) and \geq 50 dB (UHF)	100 dB	
IF rejection		100 dB	
Local oscillator			
Resolution	1 Hz	1 Hz	1 Hz
Frequency error	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶
Phase noise ⁷⁾	≥50 dB	≥58 dB	≥62 dB ⁸⁾
SSB phase noise (RF = 860 MHz)	typ. —82 dBc /Hz at 1 kHz typ. —90 dBc /Hz at 10 kHz	typ. —91 dBc /Hz at 1 kHz typ. —100 dBc /Hz at 10 kHz	typ. –93 dBc /Hz at 1 kHz typ. –106 dBc /Hz at 10 kHz
System performance			
MER	≥40 dB ⁹⁾	≥41 dB ¹⁰⁾	≥42 dB ¹¹⁾
EVM	≤0.66% ⁹⁾	≤0.59% ¹⁰⁾	≤0.52% ¹¹⁾
SNR	≥42dB ⁹⁾	≥43 dB ¹⁰⁾	≥44 dB ¹¹⁾

¹⁾ The selective RF inputs of the high-end TV test receiver (with option EFA-B3) are additional to the non-selective RF input of the high-end demodulator. For specifications involving the non-selective RF input see the high-end demodulator column.

²⁾ Center frequency.

³⁾ For frequencies < 10 MHz: group delay tilt increases up to 200 ns, amplitude tilt increases up to 0.7 dB pp typ., minimum input level: -30 dBm, SAW filter ON.

⁴⁾ For quasi error-free MPEG2 transport stream, 2560AM.

⁵⁾ At low input frequencies such as 4.57 MHz: additional tilt (0.7 dB pp typ.), minimum input level: -30 dBm, SAW filter ON.

6) RF >47.15 MHz

^{γ)} FM S/N ratio measured at IF output, referred to ±30 kHz frequency deviation and 500 Hz modulation frequency, deemphasis 50 μs, measured to DIN45405, weighted to CCIR468-3.

⁸⁾ In frequency range 45 MHz to 900 MHz.

⁹⁾ Signal power >-40 dBm, equalizer on.

¹⁰⁾ Signal power >-43 dBm, equalizer on.

¹¹⁾ Signal power >-30 dBm, equalizer on.

ITU-T J.83/B common characteristics

IF input	50 Ω , BNC female, rear panel
Return loss	≥20 dB in channel
Center frequency	36 MHz
Level range	-30 dBm to -5 dBm
IF output	50 Ω , BNC female, rear panel
Return loss	≥20 dB
Center frequency	36 MHz
Level, regulated	—17 dBm
MPEG2 TS parallel output	LVDS (188 bytes)
MPEG2 TS ASI output	serial MPEG2 transport stream (ASI); 75 $oldsymbol{\Omega}$
Symbol rate	1 Msymbols/s to 6.999 Msymbols/s
Bandwidth (SAW filter)	2 MHz, 6 MHz, 8 MHz or SAW filter OFF
Channel correction	self-adapting equalizer, equalizer freeze, equalizer off
Measurements	signal power carrier frequency offset symbol rate offset MPEG2 TS bit rate BER (bit error ratio) before and after Reed-Solomon decoder EVM (error vector magnitude) MER (modulation error ratio) SNR (signal/noise ratio) phase jitter I/Q amplitude imbalance I/Q quadrature error carrier suppression crest factor shoulder attenuation
Graphic displays	constellation diagrampolar plothistogram I/Qamplitude distribution (RF)frequency spectrumCCDF (RF)amplitude frequency responseeye monitoringphase frequency responsehistorygroup delay frequency response
Alarm messages	signal power, synchronization, EVM, MER, BER before Reed-Solomon decoder, MPEG2 data error
Storage	alarm message with date and time, up to 1000 messages
Memory for instrument setup storage	0 to 4

Test parameters	Range	Resolution	Error
Signal power	corresponding to level range	0.1 dB	<3 dB, typ. <1 dB
MER dB (modulation error ratio in dB)	18 dB to 30 dB 30 dB to 35 dB	0.1 dB 0.1 dB	≤0.8 dB ≤1.0 dB
MER % (modulation error ratio in %)	1.9% to 3.2% 3.2% to 12.5%	0.01% 0.01%	≤12% of actual value ≤10% of actual value
EVM (error vector magnitude)	1.17% to 2.07% 2.07% to 8.3%	0.01% 0.01%	≤12% of actual value ≤10% of actual value
SNR (signal/noise ratio)	18 dB to 30 dB 30 dB to 35 dB	0.1 dB 0.1 dB	≤0.5 dB ≤0.8 dB
I/Q amplitude imbalance	0.00% to 5.00%	0.01%	≤0.03%
I/Q quadrature error	0.00° to 5.00°	0.01°	≤0.03°
Carrier suppression	25 dB to 45 dB 45 dB to 60 dB	0.1 dB 0.1 dB	≤1.0 dB ≤3.0 dB
Carrier frequency offset	±100 kHz	1 Hz	≤280 Hz + 2 ppm x RF
Symbol rate offset	±150 ppm	0.1 ppm	<10 ppm, typ. <3 ppm
MPEG TS bit rate	5.333 Mbit/s to 43.433 Mbit/s	1 kbit/s	<1 kbit/s
BER before Reed-Solomon	1.0×10^{-3} to 0.1 x 10^{-15}	0.1 x 10 ^{-exponent}	-
BER after Reed-Solomon	1.0×10^{-5} to 0.1×10^{-14}	0.1 x 10 ^{-exponent}	_

NTSC/BTSC characteristics (specific to EFA models 90/93 or option EFA-B30)

	Standard test receiver	High-end test receiver	High-end demodulator
		with option EFA-B3	
RF input	selective	selective ¹⁾	non-selective
Connector	50 Ω or 75 Ω , BNC or N female, front or rear panel	50 Ω , N female, rear panel and 75 Ω BNC female, rear panel	50 Ω , N female, rear panel
Return loss	≥14 dB in channel with 50 Ω connector and input attenuation ≥10 dB ≥12 dB in channel with 75 Ω connector and input attenuation ≥10 dB	≥17 dB (>20 dB typ.) in channel with 50 Ω connector ≥14 dB (>17 dB typ.) in channel with 75 Ω connector	≥30 dB
Frequency range ²⁾	45 MHz to 860 MHz	5 MHz ³⁾ to 1000 MHz	45 MHz to 1000 MHz
Level range ⁴⁾	-67 dBm to +13 dBm (preamplifier = OFF) -77 dBm to +3 dBm (preamplifier = ON)	$-67 \text{ dBm to } +21 \text{ dBm (normal)}^{5)}$ -67 dBm to +21 dBm (low distortion) ⁵⁾ -77 dBm to +21 dBm (low noise) ⁵⁾	-41 dBm to +21 dBm
Noise figure	12 dB typ. (low noise) 7 dB typ. (low noise, preamplifier = ON)	9 dB typ. (normal) 7 dB typ. (low noise) 11 dB typ. (low distortion)	
Image frequency rejection	\geq 70 dB (VHF) ⁶⁾ and \geq 50 dB (UHF) ⁶⁾	100 dB	
IF rejection		100 dB	
Local oscillator			
Resolution	1 Hz	1 Hz	1 Hz
Frequency error	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶
Phase noise 7)	≥50 dB	≥58 dB	≥62 dB ⁸⁾
SSB phase noise	typ. –82 dBc /Hz at 1 kHz	typ. –91 dBc /Hz at 1 kHz	tvp. –93 dBc /Hz at 1 kHz
(RF = 860 MHz)	typ. –90 dBc /Hz at 10 kHz	typ. -100 dBc /Hz at 10 kHz	typ. -106 dBc /Hz at 10 kHz
Video demodulation			
Signal/noise ratio			
(referred to b/w transition)	P _{RF} ≥–30 dBm	$P_{RF} = -33 \text{ dBm}$	P _{BF} ≥—1 dBm
S/N _{rms}	low noise: ≥60 dB typ. 64 dB	low noise: ≥64 dB typ. 66 dB	≥67 dB typ. 70 dB
weighted to CCIR Rec. 567	low distortion: ≥57 dB typ. 59 dB	low distortion: ≥62 dB typ. 64 dB	<i>"</i>
Nonlinear distortion			
(with synchronous detector)			
Luminance nonlinearity	≤2%	≤2%	≤2%
Differential gain	≤2%	≤2%	≤2%
Differential phase	≤1°	≤1°	≤1°
Intermodulation in channel, referred to b/w transition	low noise: ≥52 dB low distortion: ≥62 dB	low noise: ≥52 dB low distortion: ≥62 dB	≥55 dB
3rd-order intercept point	low noise: ≥0 dB	normal: ≥+10 dBm	
(0 dB attenuation)	low distortion: \geq +5 dB	low distortion: ≥+14 dBm	
Linear distortion 9)			
Amplitude frequency response Sound trap OFF Sound trap ON	≤0.5 dB (DC to 4.2 MHz) ≤0.5 dB (DC to 3.6 MHz)	reference: 0.5 MHz ≤0.35 dB (DC to 4.2 MHz) ≤0.35 dB (DC to 3.6 MHz)	reference: 0.5 MHz ≤0.25 dB (DC to 4.2 MHz) ≤0.25 dB (DC to 3.6 MHz)
Group delay frequency response	reference 0.1 MHz	reference 0.1 MHz	reference 0.1 MHz
Flat group delay (≤4.2 MHz)	≤25 ns	≤20 ns	≤20 ns
FCC group delay (≤3.6 MHz)	≤25 ns	≤20 ns	≤20 ns
Transient response			
(with synchronous detection)	12.5/75% modulation	12.5/75% modulation	12.5/75% modulation
2T pulse k factor	≤1%	≤1% typ. 0.6%	≤1% typ. 0.5%
2T pulse amplitude error			≤2% typ. 1%
12.5T pulse amplitude error			≤5%
Chrominance/luminance gain			≤3%
Chrominance/luminance delay			
Flat group delay	≤20 ns	≤15 ns	≤12 ns
FCC group delay	≤20 ns	≤20 ns	≤20 ns
Tilt, 15 kHz, T _{rise} 200 ns	≤1%	≤1%	≤1%

¹⁾ The selective RF inputs of the high-end TV test receiver (with option EFA-B3) are additional to the non-selective RF input of the high-end demodulator. For specifications involving the non-selective RF input see the high-end demodulator column.

²⁾ Vision carrier frequency.

 $^{3)}\,$ For frequencies < 10 MHz: group delay tilt increases up to 200 ns, amplitude tilt increases up to 0.7 dB pp typ., minimum input level: -30 dBm, SAW filter ON.

⁴⁾ Levels are rms values referred to sync. pulse.

⁵⁾ In receive range 5 MHz to 20 MHz: .-41 dBm to +20 dBm.

⁶) Image frequency of vision carrier.

 $^{7)}\,$ FM S/N ratio measured at IF output, referred to $\pm 30\,$ kHz frequency deviation and 500 Hz modulation frequency, deemphasis 50 $\mu s,$ measured to DIN45405, weighted to CCIR468-3.

⁸⁾ In frequency range 45 MHz to 900 MHz.

9) Additional ripple caused by SAW filter.

Common NTSC/BTSC demodulator characteristics (EFA models 90/93 or option EFA-B30)

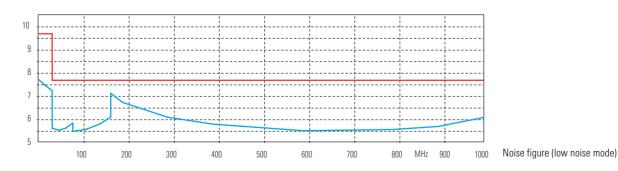
IF input	50 Ω , BNC female, rear panel
Vision carrier frequency	38.9 MHz
Return loss (34 MHz to 40 MHz)	≥20 dB
Input level	-21 dBm to -1 dBm (rms value referred to sync pulse)
IF output	50 Ω , BNC female, rear panel
IF vision carrier frequency	38.9 MHz
Return loss (34 MHz to 40 MHz)	≥20 dB
Input level, regulated	-7 dBm (rms value referred to sync pulse)
Amplitude frequency response (34 MHz to 40 MHz)	≤0.25 dB
Intercarrier input	50 Ω , BNC female, rear panel
Intercarrier frequency	4.5 MHz
Return loss (4.4 MHz to 4.6 MHz)	≥20 dB
Input level	-35 dBm to -15 dBm
Zero reference	selectable: internal/external/off
Position of internal zero reference pulse	$8\mu s$ to 55 μs in line, line 10 to 22 selectable, field 1/2 selectable
External zero reference input	75 Ω , BNC female, rear panel
Control voltage	>1 V
Delay of carrier blanking relative to control pulse	<3 µs
Video demodulation	synchronous and envelope detector (switchable)
Synchronous detector PLL mode: PLL bandwidth	sampled: medium, slow
	continous: fast, medium, slow
Video bandwidth/group delay (sound trap)	4 MHz (FCC), 5 MHz (FCC), 5 MHz (FLAT)
Video outputs	75 $\Omega,$ BNC female, front panel ;75 $\Omega,$ BNC female, rear panel
Return loss (0 to 5 MHz)	≥26 dB
Output level (CCVS, modulation depth 87.5%)	1.0 V _{PP} $\pm 2\%$ into 75 Ω
DC offset of video signal, zero vision carrier	0 V ±20 mV
Decoupling of outputs (level variation at terminated output when switching the	
other outpus between short circuit and open circuit)	≤1%
Quadrature output of synchronous detector	75 Ω , BNC female, rear panel
Return loss (0 to 5 MHz)	≥20 dB
Gain error referred to inphase signal	≤1 dB
Audio demodulation modes	split carrier, quasi split carrier, intercarrier
Audio composite output	75 Ω , BNC female, rear panel
Output level into 75 Ω	10 mV/kHz FM deviation
Amplitude frequency response	
30 Hz to 47 kHz 47 kHz to 120 kHz	≤±0.05 dB
	≤±0.5 dB
Phase frequency response 30 Hz to 47 kHz	≤±0.5°
THD (±25 kHz FM deviation)	
f _{mod} 30 Hz to 15 kHz	≤0.1%
$\pm f_{mod}$ 15 kHz to 50 kHz	≤0.5%
Audio stereo outputs (BTSC/MTS)	Lemo Triax connectors, in pairs, front panel, unbalanced, Z<10 Ω
Signals	left/right, SAP, mono, L + R/L - R
Audio mono output (main channel)	Lemo Triax connector rear panel, balanced, non-floating, Z<10 Ω
Output level into 600 Ω at ±25 kHz FM deviation and 500 Hz f _{mod}	0 dBm to 10 dBm, adjustable in 0.1 dB steps
Deemphasis	75 μs/OFF
Amplitude frequency response, 30 Hz to 15 kHz	≤±0.3 dB
THD, ±25 kHz FM deviation, f _{mod} 30 Hz to 15 kHz	≤0.1%
Signal/noise ratio	
Deemphasis 75 μ s, referred to ±25 kHz FM deviation)	measured to DIN 45405, weighted to CCIR 468-3
Split-carrier mode Quasi-split carrier mode/intercarrier mode	≥60 dB
With all-black picture modulation	≥60 dB
With sinewave modulation (0 to 4 MHz)	≥50 dB

Vision carrier level, TV synchronization, vision/sound carrier ratio, FM deviation MTS pilot, FM deviation main channel, FM deviation BTSC channel

Specifications (options)

Common NTSC/BTSC demodulator characteristics cont. (EFA models 90/93 or option EFA-B30)

Test parameters	Resolution	Error
Vision carrier level (rms value referred to sync. pulse)	0.1 dB	≤3 dB
Residual picture carrier	0.1%	≤0.5%
Modulation depth of vision carrier	0.1%	≤0.5%
BAR Amplitude	0.1 IRE	≤1 IRE
Sync Amplitude	0.1 IRE	≤1 IRE
Video Amplitude	0.1 IRE	≤1 IRE
Vision/sound carrier ratio	0.1 dB	≤2 dB
FM deviation (main channel)	100 Hz	≤3% +200 Hz
FM deviation (BTSC channel)	100 Hz	≤3% +200 Hz
FM pilot deviation (MTS pilot)	10 Hz	≤5%


Options

RF Preselection EFA-B3

RF preselection for High-End Demodulator Models EFA 53/73/93. Two selective RF inputs with 50 Ω and 75 Ω impedance in addition to the non-selective RF input of the high-end demodulator. Demodulation of variable IFs (analog TV) up to 50 MHz via the selective RF inputs.

IF inputs	selective
Connectors	50 $\Omega,$ N female, rear panel and 75 $\Omega,$ BNC female, rear panel
Return loss	17 dB (>20 dB typ.) in channel with 50 Ω connector 14 dB (>17 dB typ.) in channel with 75 Ω connector
Frequency range	4.5 MHz ¹⁾ to 1000 MHz
Level range	see high-end test receiver column of relevant demodulator mode
System performance	
Noise figure	7 dB typ. (low noise) 9 dB typ. (normal) 11 dB typ. (low distortion)
Image frequency rejection	100 dB
IF rejection	100 dB

¹⁾ For frequencies < 10 MHz: group delay tilt increases up to 200 ns, amplitude tilt increases up to 0.7 dB pp typ., minimum input level: -30 dBm, SAW filter ON.

Options (continued)

MPEG2 Decoder EFA-B4

Realtime measurement functions: simultaneous monitoring of all signals in transport stream. Realtime measurement functions according to test specifications for DVB systems (ETR290): priorities 1, 2 and 3.

Signal format Transport stream Data rate of transport stream Length of data packets	to ISO/IEC 1-13818 up to 54 Mbit/s 188/204 bytes, automatic switchover
Signal input Internal: from DVB demodulator External: asynchronous serial MPEG2 transport stream, 270 Mbit/s (TS ASI)	BNC connector on rear panel, 200 mV pp to 1 V pp, 75 ${f \Omega}$
Video signal output CCVS (PAL, SECAM, NTSC) Video serial digital (ITU-R 601), 270 Mbit/s	BNC connector on rear panel, 1 V pp $\pm 1\%,$ 75 Ω BNC connector on rear panel, 800 mV pp, 75 Ω
Audio signal outputs Connectors front panel Connectors rear panel Signals Level of balanced output at rear panel (full scale) Frequency response (40 Hz to 15 kHz) S/N ratio THD	Lemo Triax female, in pairs, unbalanced, <25 Ω Lemo Triax female, in pairs, balanced, floating, <25 Ω mono, left/right, sound 1/ sound 2 +6 dBm ±0.2 dB into 600 Ω ±0.5 dB relative to 1 kHz >70 dB, unweighted >70 dB

Video Distributor EFA-B6

Video output	2 x BNC female on front panel; 2 x BNC female on rear panel; 75 Ω
Return loss (0 to 6 MHz)	≥26 dB
Level accuracy	≤2%
DC offset of video signal (MPEG2 decoder mode, black level DC offset of video signal (analog TV mode, zero vision carrier)	0 V 0 V ±20 mV
Decoupling of outputs (level variation at terminated output when switching the other outputs between short circuit and open circuit)	≤1%
Quadrature signal output	1 x BNC female on front panel; 1 x BNC female on rear panel; 75 Ω
Return loss (0 to 6 MHz)	≥20 dB
Decoupling of outputs (level variation at terminated output when switching the other outputs between short circuit and open circuit)	≤1%

6 MHz SAW Filter EFA-B11

Ripple in band	0.4 dB pp
Rejection of adjacent channels	>50 dB (>±3.8 MHz); >85 dB (>±5.3 MHz) with High Adj. Chan Power ON

8 MHz SAW Filter EFA-B13

Ripple in band	0.8 dB pp
Rejection of adjacent channels	>55 dB (>±4.4 MHz); >90 dB (>± 5.3 MHz) with High Adj. Chan Power ON

2 MHz SAW Filter EFA-B14

Ripple in band	0.7 dB pp
Rejection of adjacent channels	>45 dB (>±1.3 MHz)

General data

Display	monochrome LCD (320 x 240), backlit
Interfaces	IEC625-2/IEEE488 bus, RS-232-C, printer (Centronics)
Temperature range	to IEC68-2-1/-2
Rated temperature range/Operating temperature range	+5°C to +45°C/0°C to +50°C
Power supply	100 V to 120 V/220 V to 240 V, +10%/–15% (autoranging), 50 Hz to 60 Hz
Power consumption	EFA 12/60/78: 70 VA, EFA 33/63/89: 75 VA, EFA 33/63/89 + EFA-B3: 90 VA
Dimensions (W x H x D)	435 mm x 147 mm x 460 mm
Weight	approx. 12 kg, depending on options

Ordering information

ATSC/8VSB Test Receiver ¹⁾	EFA 50	2067.3004.50	
Selective, constellation diagram, MPEG2 data stream output			
ATSC/8VSB Test Demodulator ¹⁾	EFA 53	2067.3004.53	
Broadband, constellation diagram, MPEG2 data stream output			
ITU-T J.83/B Test Receiver ¹⁾	EFA 70	2067.3004.70	
Selective, constellation diagram, MPEG2 data stream output			
ITU-T J.83/B Test Demodulator ¹⁾	EFA 73	2067.3004.73	
Broadband, constellation diagram, MPEG2 data stream output			
TV Test Receiver, Std. M/N/NTSC/BTSC	EFA 90	2067.3004.90	
RF 45 MHz to 860 MHz			
TV Demodulator, Std. M/N/NTSC/BTSC	EFA 93	2067.3004.93	
RF 45 MHz to 1000 MHz			

¹⁾ Note: please fill in configuration sheet (available from your local representative or from Rohde & Schwarz website, EFA section) so that your test receiver / demodulator can be tailored to your requirements.

Options

RF Preselection for demodulators (models 53, 73, 93)	EFA-B3	2067.3627.02
MPEG2 Decoder	EFA-B4	2067.3633.02
Video Distributor (4 video outputs, only models 53, 73, 93)	EFA-B6	2067.3656.02
Residual Picture Carrier Measurement	EFA-B8	2067.3727.02
6 MHz SAW Filter	EFA-B11	2067.3691.00
8 MHz SAW Filter	EFA-B13	2067.3579.03
2 MHz SAW Filter	EFA-B14	2067.3562.00
Digital Demodulator Platform	EFA-B20	2067.3585.02
M/N NTSC/BTSC Demodulator	EFA-B30	2067.4046.02
Firmware options		
DVB-C / J83/A/C (QAM) Firmware (for models 50, 53, 70, 73 or option EFA-B20)	EFA-K21	2067.4000.02
ATSC/8VSB Firmware (for models 60, 63, 70, 73 or option EFA-B20)	EFA-K22	2067.4017.02
J.83/B Firmware (for models 50, 53, 70, 73 or option EFA-B20)	EFA-K23	2067.4023.02
FIR Coefficient Readout Firmware (only for EFA5x or EFA-B20 + EFA-K22)	EFA-K25	2067.4046.02
Recommended extras		
EFA Calibration Values	EFA-DCV	2082.0490.09
EFA-B4 Calibration Values	EFA-DCV	2082.0490.15
19" Adapter	ZZA-93	0396.4892.00
Lemo Triax connector (mono) with connecting cable (open)		2067.7451.00
Service manual		2068.0950.24
Carrying Bag for 19" units, 3 HU, depth 460 mm	ZZT-314	1001.0523.00

Test Receiver R&S EFA DVB-C – B/G Analog TV – D/K or I Analog TV

Comprehensive analysis/demodulation/monitoring of digital and analog TV signals

- Standard test receiver
- High-end test receiver
- High-end demodulator
- Multistandard digital and analog platform for terrestrial and CATV applications
- Application areas: production, monitoring, coverage, service, research and development
- Comprehensive measurement and monitoring functions
- Modular design easy retrofitting of options
- MPEG2 analyzer/decoder option
- IEC/IEEE-bus and RS-232-C interface
- Simple, user-friendly operation

The EFA Family

The TV Test Receiver and Demodulator Family EFA offers outstanding performance features and excellent transmission characteristics. The instruments provide high-precision reception and demodulation of vestigial sideband AM signals (analog TV signals) as well as quadrature amplitude modulated DVB signals. They measure a comprehensive range of transmission parameters and are therefore ideal for measurement and monitoring applications in cable networks, TV transmitter stations and development labs.

The complete EFA family at a glance

Standard test receivers

- Model 60: digital TV, DVB-C
- Model 12: analog TV, standard B/G
- Model 78: analog TV, standard D/K or I

High-end test receivers

- Model 63 incl. option EFA-B3: digital TV, DVB-C
- Model 33 incl. option EFA-B3: analog TV, standard B/G
- Model 89 incl. option EFA-B3: analog TV, standard D/K or I

High-end demodulators

- ◆ Model 63: digital TV, DVB-C
- ◆ Model 33: analog TV, standard B/G
- Model 89: analog TV, standard D/K or I

Standard test receiver

- Model 40: digital TV, DVB-T
- High-end test receiver
- Model 43 incl. option EFA-B3: digital TV, DVB-T

High-end demodulator

Model 43: digital TV, DVB-T

Data sheet No. PD 0757.5514.xx

Standard test receivers

- Model 50: digital TV, ATSC/8VSB
- ◆ Model 70: digital TV, ITU-T J.83/B
- ◆ Model 90: analog TV, standard M/N

High-end test receivers

- Model 53 incl. option EFA-B3: digital TV, ATSC/8VSB
- Model 73 incl. option EFA-B3: digital TV, ITU-T J.83/B
- Model 93 incl. option EFA-B3: analog TV, standard M/N

High-end demodulators

- ◆ Model 53: digital TV, ATSC/8VSB
- ◆ Model 73: digital TV, ITU-T J.83/B

Data sheet No. PD 0757.7017.xx

◆ Model 93: analog TV, standard M/N

Wide variety of models

The TV Test Receiver Family EFA from Rohde & Schwarz is a versatile and highperformance TV test receiver and demodulator platform, which can be optimally configured for any application, whether digital or analog.

Three frontends are available:

standard selective, high-end selective and

high-end non-selective.

The high-end models have a better signal-to-noise ratio than the standard models and offer excellent intermodulation characteristics. This, coupled with minimum inherent frequency response, guarantees extremely accurate measurements.

EFA – realtime signal analysis of DVB-C signals

EFA's powerful digital signal processing provides fast and thorough analysis of the received DVB-C signal. Analysis is performed simultaneously with, but independently of, demodulation and decoding. The MPEG2 transport stream is permanently available for decoding as well as for video and audio reproduction.

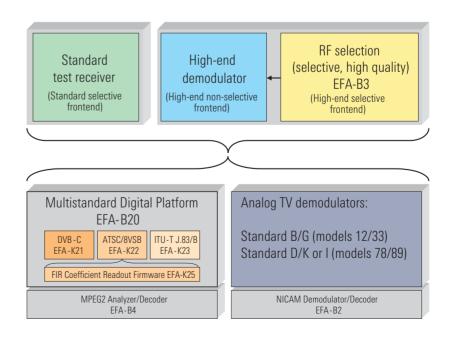
Due to its realtime analysis capability, the high number of measured values necessary for the complex calculation and display processes are made available for subsequent mathematical/statistical processing in an extremely short and as yet unequalled time. Because of its high-speed data acquisition, the TV Test Receiver EFA is the ideal choice, not only for R&D but also for production environments where short measurement cycles are essential. The family concept described in the following will help you to find the right EFA model for your application:

 If the application mainly concerns measurements in cable networks or on terrestrial signals, a receiver model that selects the channel to be measured is the appropriate choice. Adjacent-channel signals, which impair measurement results, are filtered out by high suppression.

Then, a choice has to be made between the standard selective and the high-end selective version. As with the other criteria, this choice depends on the application.

 Measurements on modulators or TV transmitters, where only one TV signal is involved, are performed with one of the demodulator models with the high-end non-selective frontend, which guarantees extremely low measurement uncertainty without preselection. The last selection criterion is the TV standard used, and whether it is analog or digital:

- The EFA test receivers can be configured for digital signals to the DVB-C, ATSC/8VSB, ITU-T J.83/B standard or for virtually all analog TV standards. A wide range of options including a NICAM demodulator (option EFA-B2) and an MPEG2 decoder (option EFA-B4) round off the EFA product line.
- Operation involving a mix of analog and digital channels is becoming more widespread especially in cable networks. This kind of operation is handled by the QAM demodulator option for


DVB-C (EFA-B20 + EFA-K21) or ITU-T J.83/B (EFA-B20 + EFA-K23)

which adds complete digital measurement functionality to the analog models.

 It is even possible to update to digital terrestrial applications according to the ATSC/8VSB standard using the

ATSC/8VSB demodulator option (EFA-B20 + EFA-K22)

EFA model selection concept

The EFA Family

Common to all models

- In-depth measurement capabilities
- Simple, user-friendly operation
- Modular design easy retrofitting of options
- Alarm messages for measurement functions, internal storage
- IEC/IEEE-bus and RS-232-C interface

Digital options

MPEG2 analyzer/decoder (option EFA-B4)

- MPEG2 syntax analysis according to DVB standard
- SDTV decoding, 625L or 525L supported, SDI output, PAL / SECAM / NTSC video out
- Error report

6 MHz SAW filter (option EFA-B11)

- Adjacent-channel rejection
- Meets US requirements

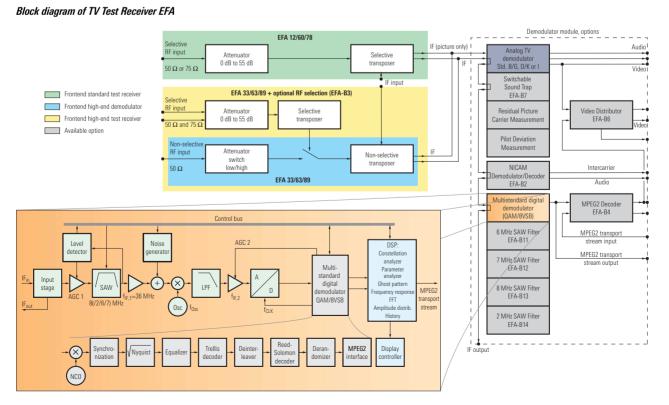
Standard test receiver (EFA models 12/60/78)

- Selective receiver
- ◆ Typical use in the field where adjacent channels need to be filtered
- High-end synthesizer with low phase noise
- Excellent price/performance ratio

High-end demodulator (EFA models 33/63/89)

- Wideband input (non-selective receiver), tunable
- ◆ Typically used for transmitter testing
- Outstanding SNR, excellent intermodulation characteristics
- High-end synthesizer with extremely low phase noise

High-end test receiver (EFA models 33/63/89 + option EFA-B3)


- Outstanding SNR and improved intermodulation characteristics
- Rejection of image frequency and IF
- Two additional selective RF inputs (50 Ω and 75 Ω)
- Extended frequency range from 4.5 MHz to 1000 MHz

7 MHz SAW filter (option EFA-B12)

- Adjacent-channel rejection
- Meets Cable Australian requirements

8 MHz SAW filter (option EFA-B13)

- Adjacent-channel rejection
- Meets European and US standards, recommended for spectrum measurements

2 MHz SAW filter (option EFA-B14)

- Adjacent-channel rejection
- Meets channel return requirements (in cable applications)

Digital demodulator platform (option EFA-B20)

- Retrofit of analog instruments
- Multistandard demodulator platform supporting DVB-C demodulation (with EFA-K21), ATSC/8VSB demodulation (with EFA-K22), ITU-T J.83/B demodulation (with EFA-K23)
- Included in basic EFA 50/53/60/63/ 70/73 models
- MPEG2 transport stream output (serial or parallel)
- General measurement functions for
 RF input level
 - carrier frequency offset
 - bit rate offset
 - BER (before and after Reed-Solomon)

DVB-C firmware (option EFA-K21)

- Analysis, demodulation and monitoring of DVB-C signals according to ETS 300 429 standard
- Included in basic EFA 60/63 models

ATSC/8VSB firmware (option EFA-K22)

- Analysis, demodulation and monitoring of ATSC/8VSB signals according to ATSC Doc. A/53
- Included in basic EFA 50/53 models
- Additional SMPTE310M MPEG2 transport stream output

ITU-T J.83/B firmware (option EFA-K23)

- Analysis, demodulation and monitoring of American digital cable signals according to ITU-T J.83/B standard
- Included in basic EFA 70/73 models

FIR coefficient readout firmware (option EFA-K25)

- Calculation of FIR filter coefficients for linear precorrection of digital signals
- Only available for the ATSC/8VSB models

Analog options

NICAM demodulator/decoder (option EFA-B2)

- Demodulation and decoding of signals to NICAM-728 standard
- I and Q signal output
- Switchable deemphasis
- Balanced audio outputs
- Measurement parameters: bit error ratio, eye height, clock and data jitter

Video distributor (option EFA-B6)

- 2 video outputs on front panel
- 2 video outputs on rear panel
- 1 additional Q output on front panel

Switchable sound trap (option EFA-B7)

- Only available for standard B/G (EFA models 12/33)
- Allows video bandwidth switchover to 6 MHz

Table of available EFA models & options

		Standard	test receiv	ers	High-end	demodulat	ors	High-end				
		Models	12	60	78	33	63	89	33	63	89	Slot
Option	Designation	Order No.	B/G	DVB-C	D/K or I	B/G	DVB-C	D/K or I	B/G	DVB-C	D/K or I	needed
EFA-B2	NICAM Demodulator/Decoder (B/G or D/K)	2067.3610.02	0	-	0	0	-	0	0	-	о	1
EFA-B2	NICAM Demodulator/Decoder (I)	2067.3610.04	-	-	О	-	-	О	-	-	0	1
EFA-B3	RF Selection	2067.3627.02	-	-	-	О	О	О	•	•	•	1
EFA-B4	MPEG2 Decoder	2067.3633.02	O ¹⁾	О	O ¹⁾	O ¹⁾	О	O ¹⁾	-	0	-	1
EFA-B6	Video Distributor	2067.3656.02	-	-	-	О	O ²⁾	О	О	O ²⁾	0	0
EFA-B7	Switchable Sound Trap	2067.3710.02	0	-	-	О	-	-	О	-	-	1
EFA-B11	6 MHz SAW Filter	2067.3691.00	O ^{1) 3)}	O ¹⁾³⁾	0							
EFA-B12	7 MHz SAW Filter	2067.3591.00	O ^{1) 3)}	0								
EFA-B13	8 MHz SAW Filter	2067.3579.03	O ^{1) 3)}	0								
EFA-B14	2 MHz SAW Filter	2067.2562.00	O ^{1) 3)}	O ¹⁾³⁾	0							
EFA-B20	Digital Demodulator Platform	2067.3585.02	O ²⁾	~	O ²⁾	O ²⁾	~	O ²⁾	O ²⁾	~	O ²⁾	1
EFA-K21	DVB-C / J.83/A/C (QAM) Firmware	2067.4000.02	O ¹⁾	~	O ¹⁾	O ¹⁾	~	O ¹⁾	O ¹⁾	~	O ¹⁾	1
EFA-K22	ATSC/8VSB Firmware	2067.4017.02	O ¹⁾	0								
EFA-K23	J.83/B Firmware	2067.4023.02	O ¹⁾	0								
EFA-K25	FIR Coefficient Readout Firmware	2067.4046.02	O ⁵⁾	0								
ZZT-314	Carrying Bag for 19" units, 3 HU	1001.0523.00	0	0	0	О	0	0	О	О	0	0

not applicable

O available

Each basic unit has three free slots to take up options.

✓ included in basic unit ◆ must be ordered with basic unit

¹⁾ Can be retrofitted if option EFA-B20 is built in.

2) Requires EFA-B4.

3) Max. 3 SAW filters.

⁴⁾ Must be ordered with min. one firmware option (EFA-K21 or EFA-K22 or EFA-K23).

⁵⁾ Can be retrofitted if options EFA-B20 and EFA-K22 are built in.

DVB-C

EFA models 60/63 - all measurement functions for DVB-C digital CATV standard

Besides the deployment of the worldwide digital terrestrial TV network and the already established digital video broadcasting over satellite, digital cable TV still represents an alternative for many consumers worldwide. Additionally, cable technology provides a return channel within the same physical layer (coax cable), allowing the consumer to send back information to the cable headend for versatile applications (full Internet access, videoon-demand and more). The boundary between data communications and TV networks has never been so narrow!

EFA 60/63 characteristics

Fully compatible with the DVB-C standard (EN 300 429), the EFA 60/63 models receive, demodulate, decode and analyze all orders of QAM (quadrature amplitude modulated) signals. All key parameters for demodulating the received signal can be automatically or manually selected:

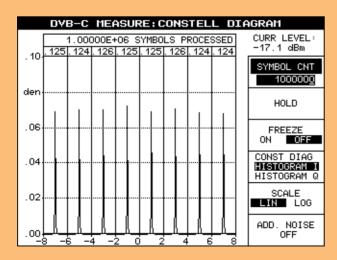
- 4, 16, 32, 64, 128 or 256 QAM modulation
- Variable symbol rate for special modulator tests and lab analysis (1 Msymbol/s to 6.999 Msymbol/s)

- Reed-Solomon error correction
- Optional SAW filter bandwidths: 6 MHz, 7 MHz, 8 MHz and 2 MHz
- Input of any IF frequency with the aid of the EFA-B3 option: frequency range continuously tunable from 5 MHz to 1000 MHz
- Special function: invert spectrum
- Bit error ratio measurement (before and after Reed-Solomon decoder)
- Integrated noise generator for measurement of noise margin

Features

The new test receiver, even the basic version, features a wide range of innovative measurement functions, allowing comprehensive, in-depth signal analysis. In addition to measuring general parameters (Fig. 1) such as bit error ratio (BER), more thorough analysis includes:

- I/Q constellation diagrams (Fig. 2) with user-selectable number of symbols to be displayed, range: 1 to 999 999 999 symbols
- Histogram I (Fig. 3) and Q (Fig. 4) with user-selectable number of symbols to be displayed, range: 1 to 999 999 999 symbols


- I/Q parameters, modulation error ratio (MER), error vector magnitude (EVM), phase jitter and signal-to-noise ratio (Fig. 5)
- Frequency spectrum (Fig. 6)
- Complex channel transmission function (Fig. 7)
- Received echo signals (Fig. 8)
- Linearity analysis from amplitude distribution histogram and CCDF referred to the RF signal (Figs 9 and 10)
- History function: long-term monitoring of transmission parameters (Fig. 11)
- Monitoring window (Fig. 12)
- Permanent MPEG2 transport stream demodulation (independent from the selected measurement task)
- Integrated noise generator

Any failures and degradations are immediately visible in the constellation diagram. Effects of interest can be located more precisely by varying the number of symbols represented. The integrated spectral analysis function enables easy examination of the signal type and its spectrum.

DYB-C MEASURE												
SET RF 213.00 MHz	CHANNEL 13	ATTEN : 0 dB 42.8 dBm										
MODULATION: FREQUENCY:	CONSTELL DIAGRAM											
FREQUENCY OFF SET SYMBOL RA SYMBOL RATE C	FREQUENCY DOMAIN											
BER: BER BEFORE RS	TIME DOMAIN											
BER AFTER RS		10 (1KO2/10KO) 3 (1KO5/10KO)	QAM PARA- METERS									
	RESET BER											
TS BIT R	ATE 50.87	'O MBit∕s	ADD. NOISE OFF									

		D	YE	3-1	С	MB	ĒÂ	sι	IR	=:	СС	JN	ST	Ξ			DIAGRAM
	10000 SYMBOLS PROCESSED											CURR LEVEL:					
L	•	٠	٠	٠	•	-	•	-	٠	٠	•	•	۰.	•	•	-	-42.8 dBm
L	•	٠	٠	•	•	٦	-	-	•	•	-	٠	•	-	٠	٠	SYMBOL CNT
L	·	•	•	۲	•	-	-	٠	•	-	,	-	•	•	•	٠	10000
	*	٠	•		•	٠	٠	•	-	٠	•	-	-	•	•	*	
	-	٠	۲	•	4	·	٠	,	۰	٠	٩	٠	٠	٠	•	٠	HOLD
	٠	4	,	•	٠	٠	٠	٠	-	-	·	·	-	•	٠	•	
	٠	٠		1	٠		3	٠	-	-	٦	٦	٠	•	٠	-	FREEZE
L	٠	•	•	•	٠	٠	٠	-	٠	د	·	٠	٠	٠	-	٩	ON OFF
Ľ	•	٠	٠	۲	•	•	*	•	٠	•	•	•	٠	•	•	•	CONCT DIAC
L	-		·	٩	٠	•	٠	-	٠	•	·	٠	4	٠	٠	•	CONST DIAG HISTOGRAM I
Γ	•	•	•	٠	٠	•	•	٦	•	1	٠	,	٠	٠	•	٤	HISTOGRAM Q
Ľ	•	٠		L	•	•	•	٠	•	•	•	•	٠	*	•		
Ľ	٩	٩	٠	¥.	•	۲	•	٠	٠	٠	٠	٠		٠	٠	۲]
	۲	٠	٠	•	•	•	٠	•	٠	٠	۲	٠	۲	+	+	٠]
Ľ	,	٠	ĸ	•	٦	٠	٠	٩	,	·	٩	۰	Ł	٠	٠	٠	ADD. NOISE
Ľ	4	4	•	4	•	•	•	٠	٠	1	•	•	•	+		•	OFF

Fig. 1: Measurement menu

All parameters for the demodulated DVB-C channel are displayed on a single screen and can be checked at a glance:

- Level of the input signal
- Two BERs (bit error ratio) before and after Reed-Solomon decoder — provide a fast quality overview of the demodulated signal
- Demodulated symbol rate
- Symbol rate offset

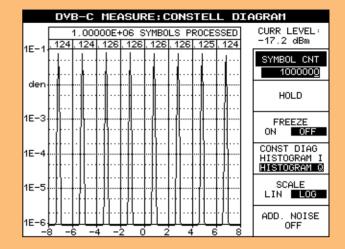
Hint: When required, the internal noise generator can be activated to perform END (equivalent noise degradation) or noise margin measurements which are based on the BER measurement.

Fig. 2: Constellation diagram

The constellation diagram is always the best way to represent digital modulation. It is also the best visual tool for interpreting measurement results such as I/Q amplitude imbalance or carrier suppression. For in-depth analysis, adjustment of the displayed number of symbols is possible (10 000 symbols are shown in this example).

Fig. 3: Histogram I

Histogram I represents the distribution of the quadrature amplitude modulated (QAM) signal on the X axis (I for inphase), and can be expressed in a linear or logarithmic scale. It allows an estimate of the interferer's origin (interferer, Gaussian noise, etc).


Linear scaling is used in this plot.

DVB-C

Fig. 4: Histogram Q

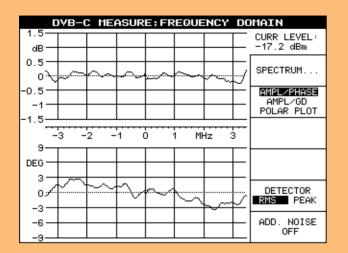
Same representation as Fig. 15 — but referring to the distribution of the Q component projected on the X axis (Q for quadrature).

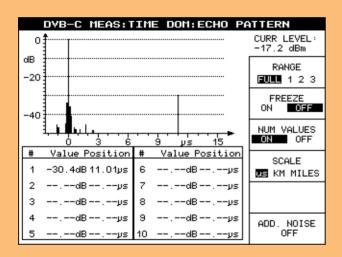
Logarithmic scaling is used in this plot.

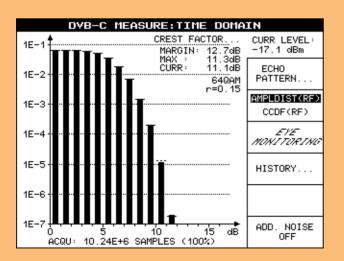
Fig. 5: QAM modulation parameters

All QAM parameters are calculated from the constellation diagram:

- I/Q amplitude imbalance
- I/Q phase error
- Carrier suppression
- Phase jitter
- Signal-to-noise ratio
- MER (modulation error ratio), RMS and Min
- EVM (error vector magnitude), RMS and Max


078-C 1	1EASURE	QAM PARAMET	ERS
SET RF 213.00 MHz	CHANNEL 13	ATTEN : 25 dB - 17.2 dBm	
MODULATION:			CONSTELL DIAGRAM
I∕Q AMPL IMBA I∕Q QUADRATUR CARRIER SUPPR	E ERROR	0.03 % 0.04 ° 51.3 dB	FREQUENCY DOMAIN
TRANSMISSIO PHASE JITTER SIGNAL/NOISE	(RMS)	0.11 ° 44.62 dB	TIME DOMAIN
SUMMARY:			
MER (RMS) MER (MIN)		42.84 dB 27.92 dB	
MER (RMS)		0.72 %	
MER (MAX)		4.02 %	ADD. NOISE OFF


-C MEASURE: FREQ DOMAIN: SPECTRUM DVB-11.80 kHz AVG: 50/50 RB₩÷ CURR LEVEL: -10 -17.2 dBm dB AVERAGE CNT -20 50 -30 PEAK HOLD -40 DETECTOR -50 MIN RMS MAX START FREQ -60 -4.48 MHz -70 STOP FREQ 4.48 MHz 80 -2 ń MĤz ADD. NOISE SHOULDER ATT (SAW OFF; ETR290): LOWER: #45.6dB UPPER: #48.3dB OFF


Fig. 6: Spectrum analysis

Thanks to this measurement, a separate spectrum analyzer is not required anymore.

Basic spectrum analyzer functions are provided. For example, the start/stop frequency (or center/span) and several detection and averaging modes can be selected.

Fig. 7: Amplitude and phase frequency response

The coefficients of the equalizer are used to display the amplitude and phase frequency response (shown here), the group delay (not shown here) and the polar plot representation.

The polar plot representation — which is the complex representation of amplitude and phase — may help to interpret very short echoes that are difficult to visualize on the echo pattern display.

Fig. 8: Echo pattern

The echo pattern measurement allows the main QAM signal (0 dB relative), echoes and pre-echoes to be visualized and measured (numeric values).

The units of the X axis and of the numeric values can be changed from μ s to km or even miles, depending on the application.

Fig. 9: Amplitude distribution

The measurement function for displaying the amplitude distribution or the CCDF (complementary cumulative distribution function) is used to detect nonlinear distortion.

The frequency distribution of the QAM signal is divided into several 1 dB windows to determine the amplitude distribution. Information on the crest factor is obtained from the frequency distribution and displayed in the upper right-hand corner of the graph. The reference values are marked by short horizontal lines.

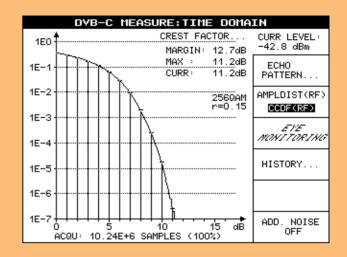
DVB-C

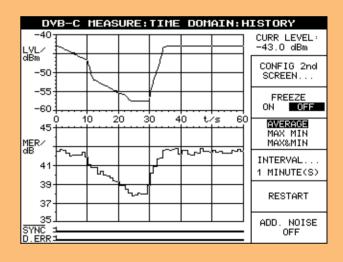
Fig. 10: Complementary cumulative distribution function (CCDF)

In contrast to the amplitude distribution, each trace point indicates how often a certain voltage level is attained or exceeded. The ideal frequencies are displayed as short, horizontal lines at 1 dB intervals (reference values) so that the amplitude distribution of the applied signal can be compared with that of an ideal QAM signal. Any deviation from the ideal distribution is then identified by the deviations of the column heights and the value of the crest factor, for example due to clipping in the modulator output stage.

Fig. 11: History function

This measurement is just what is required for long-term monitoring of modulators in cable headends.


The key parameters (level, synchronization information, MER/dB, MER/%, EVM/%, BER before and after Reed-Solomon decoder, synchronization and MPEG2 transport stream data error) are, therefore, displayed in graphical form. This mode can also display all values numerically (average, max, min, current). BER and level measurements run continuously and are independent of other measurements. The user can configure a monitoring interval from 60 seconds (shown here) to 1000 days.


Fig. 12: Monitoring/Alarm register

The EFA checks the input level (LV), QAM synchronization (SY), modulation error ratio (ME), error vector magnitude (EV), bit error ratio before Reed-Solomon decoder (BR) and MPEG2 data errors (DE) of the DVB-C signal at a rate of once per second.

All alarm messages are stored in the alarm register together with the date and time.

Up to 1000 entries can be stored.

1	DVB-C ALARM												
	SET RF CHANNEL						ATTEN : 0 dB 43.0 dBm						
	NO	DATE 03.08.01		TIME :58:				ALA ME		BR	DE	REGISTER CLEAR	
		03.08.01 03.08.01					 	 			DE 	THRESHOLD	
	73	03.08.01	14	:55:	59							CONFIG	
	75	03.08.01 03.08.01 03.08.01	14	:56:	09							LINE Newest Man	
	78	03.08.01 03.08.01	14	:56:	17					 BR		PRINT	
		03.08.01 03.08.01						ME 	EV 			STATISTICS	

Typical applications

EFA for production of modulators

The EFA's analysis capabilities permit indepth testing of the cable modulator's performance thanks to the outstanding MER/EVM dynamic range, amplitude distribution measurement and spectrum analysis. Another feature is the Equalizer ON/FREEZE/OFF function, which is mandatory during the alignment phase of modulators. Finally, the high accuracy and repeatability of the measurements makes the EFA ideally suited for the production of QAM modulators.

Cable headend monitoring

The capability of the EFA to handle multichannel reception with the spectrum measurement and the history functions (graphical measurement representation versus time) permits the unit to monitor cable headends. In addition, an alarm is triggered if one of the selected parameters exceeds the set threshold (all thresholds can be individually configured). Incident level, QAM synchronization, MER (modulation error ratio), EVM (error vector magnitude), BER before Reed-Solomon decoder and MPEG2 TS data error can be checked in realtime independently of other measurements and decoding. If an error occurs, a 1000-line

register is available for recording the date, time and description of the event.

EFA in research and development laboratories

Thanks to the highquality frontend design, the dynamic range of the modulation error ratio mea-

surement (MER dynamic range better than 41 dB) allows the unit to be used as a reference demodulator in research and development laboratories.

EFA as a multistandard digital and analog platform

Since the analog standards B/G, D/K and I are still used in cable networks, and cable operators need a future-proof solution for their short- and long-term investment, the

digital DVB-C demodulator option can be implemented in the analog units. It covers all application areas from R&D to cable headend measurements. Furthermore, to protect your investment, the unit can be updated by means of options to demodulate and analyze the ITU-T J.83/B cable and ATSC/8VSB digital terrestrial standards. These unique features make the new EFA family members THE measurement devices for the present and the future.

Summary of measurements required for the various DVB-C applications

DVB-C application	Level	BER	I/Q parameters	SNR	Phase jitter	MER/EVM	Constellation diagram Histograms	Frequency spectrum	Amplitude (f) - phase (f) - group delay (f)	Amplitude distribution - CCDF	Echo pattern	History	Alarm	Statistics
Production of modulators	~	~	~	~	~	ļ	~	•	~	~				
Cable head- end monitoring	~	~				~	~	~			~	!	~	~
Research and development	~	~	~	~	~	~	!	~	~	~	~	~		
Service	~	~	~			~		~				~	~	~

most important measurement

✔ required measurement

Analog TV

EFA models 12/33/78/89 - analog TV test receivers

Since the analog terrestrial standards B/G, D/K and I are still commonly in use, and broadcasters need a future-proof solution for their short- and long-term investment, Rohde & Schwarz provides a high-end measurement device that can cover all application areas from R&D to field measurements. This EFA model was created to offer the best performance and the most useful features to test standard B/G, D/K and I transmitters under optimal conditions.

To further protect your investment, the unit can be updated by means of options to demodulate and analyze the digital CATV standards DVB-C (option EFA-K21) and ITU-T J.83/B (option EFA K-23) as well as the ATSC/8VSB digital terrestrial standard (option EFA K-22). These unique features make the new EFA family members THE measurement devices for the present and the future!

Characteristics of analog EFA models 12/33/78/89

Fully compatible with analog standards, the analog EFA models receive and demodulate most analog TV standards (B/G, D/K and I). All key parameters for demodulating the received signal can be automatically or manually selected:

- Switchable group delay correction
- Switchable synchronous detector (5 different modes)
- Demodulation using intercarrier method
- Balanced audio outputs
- Measurement functions for
 vision/sound carrier spacing (level and frequency)
 - FM sound carrier and pilot deviation
 - Residual Picture Carrier (RPC) or video modulation depth
- Input of any IF frequency with the aid of the EFA-B3 option: frequency range continuously tunable from 5 MHz to 1000 MHz

Features

The analog EFA models provide high-precision demodulated baseband signals (vision and sound) for measurements in various applications (TV transmitters, cable headends, coverage measurements, R&D). At the same time, all relevant RF parameters are monitored at high speed and represented in a logical manner (Fig. 13). User-configurable alarm messages permit unattended monitoring of the received signals as well as switchover to alternative links in the event of a failure.

The high-end demodulator version is used for on-site measurements on TV transmitters. This version offers particularly lowdistortion demodulation of the broadcast signal. It is perfectly suited for these types of measurements; its low measurement uncertainty permits optimal alignment as well as permanent quality control of transmitters.

Fig. 13: Measurement window

All parameters for the demodulated standard B/G TV channel are displayed on a single screen and can be checked at a glance:

- Vision carrier level
- Video modulation depth
- Sound intercarrier measurements
- Vision/sound level ratio
- Sound 1 & 2 FM deviation
- Pilot decoding

NYQU FM MEASURE							
SET RF	CHANNEL	ATTEN : 1		STANDARD			
503.25 MHz	25	84.2 🤇	BuY	B/G			
VISION CAR	RIER:						
LEVEL SET RF MEASURED CONTROLLI VIDEO LE	RF ED RF VEL	503 503 503	. 250000 . 250000 . 250000) MHz			
SOUND CARR	IER:						
VISION/S INTERCAR INTERCAR FM DEVIA FM DEVIA	DUND2 CAR RIER1 FRE RIER2 FRE TION SOUN TION SOUN TION PILO	RIER RATIO RIER RATIO QUENCY QUENCY D1 D2 T AVERAGE	20.1 5.5345 5.7476 27.2 31.2	dB 5 MHz 5 MHz 2 kHz 2 kHz 4 kHz 3 kHz			

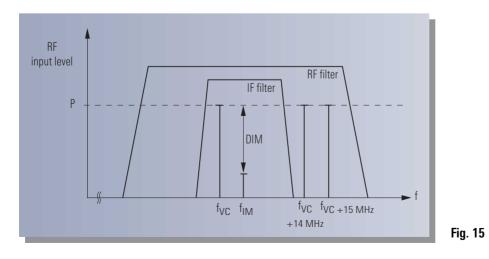
Specification of intermodulation

In-channel distortion

In-channel distortion is determined by means of a modulated TV signal with a vision carrier (f_{VC}), a colour subcarrier (f_{SB}) and a sound carrier (f_{SC}). Modulation is chosen such that the vision carrier is lowered by 6 dB, the colour subcarrier by 14 dB and the sound carrier by 10 dB relative to the sync pulse level. The level of the intermodulation product is measured at the video output relative to the black-to-white transition of the video signal. Fig. 14 shows the signals involved and the reference level at the RF.

Out-of-channel distortion

The effect of signals outside the received channel is described by the 3rd-order intercept point (TOI). For the EFA family, this parameter is specified on the basis of a three-tone measurement with the following signals: a wanted carrier at the receive frequency f_{VC} and two unwanted carriers 14 MHz and 15 MHz above the receive frequency.


The unwanted frequencies are chosen to be within the bandwidth of the RF selection but outside the bandwidth of the first IF filter. The effect of out-of-channel interference on the receiver can thus reliably be determined. It is assumed that each of the three signals has a level P = -33 dBm. The level of the intermodulation product Δ IM 1 MHz relative to the wanted carrier is measured (see Fig. 15,

$$TOI/dBm = P/dBm + \frac{\Delta IM/dB}{2} + 3$$

measurement at the RF). The 3rd-order

intercept point is::

DVB-C characteristics (specific to EFA models 60/63 or options EFA-B20 + EFA-K21)

	Standard test receiver	High-end test receiver with option EFA-B3	High-end demodulator
RF input	selective	selective ¹⁾	non-selective
Connector	50 Ω or 75 $\Omega,$ BNC or N female, front or rear panel	50 Ω , N female, rear panel and 75 Ω , BNC female, rear panel	50 Ω , N female, rear panel
Return loss	≥14 dB in channel with 50 Ω connector and input attenuation ≥10 dB ≥12 dB in channel with 75 Ω connector and input attenuation ≥10 dB	≥17 dB (>20 dB typ.) in channel with 50 Ω connector ≥14 dB (>17 dB typ.) in channel with 75 Ω connector	≥30 dB
Frequency range ²⁾	48 MHz to 862 MHz	4.5 MHz ³⁾ to 1000 MHz	45 MHz to 1000 MHz
Level range ⁴⁾	-55 dBm to +20 dBm (low distorsion, preamplifier off) -59 dBm to +20 dBm (low noise, preamplifier off) -64 dBm to +13 dBm (low noise, preamplifier on)	-63 dBm to +20 dBm ⁵⁾ (normal) -62 dBm to +20 dBm ⁵⁾ (low distorsion) -65 dBm to +16 dBm ⁵⁾ (low noise)	—50 dBm to +20 dBm
Noise figure	12 dB typ. (low noise) 7 dB typ. (low noise, preamplifier on)	7 dB typ. (low noise) ⁶⁾ 9 dB typ. (normal) ⁶⁾ 11 dB typ. (low distortion) ⁶⁾	
Image frequency rejection	\geq 70 dB (VHF) and \geq 50 dB (UHF)	100 dB	
IF rejection		100 dB	
Local oscillator			
Resolution	1 Hz	1 Hz	1 Hz
Frequency error	$\leq 2 \times 10^{-6}$	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶
Phase noise 7)	≥50 dB	≥58 dB	≥62 dB ⁸⁾
SSB phase noise (RF=860 MHz)	–82 dBc/Hz typ. at 1 kHz –90 dBc/Hz typ. at 10 kHz	—91 dBc/Hz typ. at 1 kHz —100 dBc/Hz typ. at 10 kHz	—93 dBc/Hz typ. at 1 kHz —106 dBc/Hz typ. at 10 kHz
System performance			
MER	≥40 dB ⁹⁾	≥41 dB ¹⁰⁾	≥42 dB ¹¹⁾
EVM	≤0.66% ⁹⁾	≤0.59% ¹⁰⁾	≤0.52% ¹¹⁾
SNR	≥42 dB ⁹⁾	≥43 dB ¹⁰⁾	≥44 dB ¹¹⁾

¹⁾ The selective RF inputs of the high-end TV test receiver (with option EFA-B3) are additional to the non-selective RF input of the high-end demodulator. For specifications involving the non-selective RF input, see the high-end demodulator column.

²⁾ Center frequency.

³⁾ For frequencies < 10 MHz: group delay tilt increases up to 200 ns, amplitude tilt increases up to 0.7 dB pp typ., minimum input level: -30 dBm, SAW filter ON.

⁴⁾ For quasi error-free MPEG2 transport stream, 256 QAM.

⁵⁾ At low input frequencies such as 4.57 MHz: additional tilt (typ. 0.7 dB pp), minimum input level: –30 dBm, SAW filter ON.

⁶⁾ RF >47.15 MHz.

⁷ FM S/N ratio measured at IF output, referred to ±30 kHz frequency deviation and 500 Hz modulation frequency, deemphasis 50 µs, measured to DIN45405, weighted to CCIR468-3.

⁸⁾ In frequency range 45 MHz to 900 MHz.

 $^{9)}$ Signal power > -40 dBm.

¹⁰⁾ Signal power > -43 dBm.

¹¹⁾Signal power > -30 dBm.

DVB-C characteristics (cont.)

IF input	50 Ω , BNC female, rear panel
Return loss	≥20 dB in channel
Center frequency	36 MHz
Level range	30 dBm to5 dBm
IF output	50 $oldsymbol{\Omega}$, BNC female, rear panel
Return loss	≥20 dB in channel
Center frequency	36 MHz
Level, regulated	-17 dBm
MPEG2 TS parallel output	LVDS (188 bytes/204 bytes)
MPEG2 TS ASI output	serial MPEG2 transport stream (ASI); 75 $oldsymbol{\Omega}$
Symbol rate	1 Msymbol/s to 6.999 Msymbol/s
Bandwidth (SAW filter)	2 MHz, 7 MHz, 6 MHz, 8 MHz or SAW filter OFF
Channel correction	self-adapting equalizer, equalizer freeze, equalizer off
Measurements	signal power carrier frequency offset symbol rate offset MPEG2 TS bit rate BER (bit error ratio) before and after Reed-Solomon decoder EVM (error vector magnitude) MER (modulation error ratio) SNR (signal/noise ratio) phase jitter I/Q amplitude imbalance I/Q quadrature error carrier suppression crest factor shoulder attenuation according to ETR290
Graphic displays	constellation diagram histogram I/Q frequency spectrum amplitude frequency response phase frequency response group delay frequency response polar plot amplitude distribution (RF) CCDF (RF) eve monitoring
	history
Alarm messages	signal power, MPEG2 synchronization, EVM, MER, BER before Reed-Solomon decoder, MPEG2 data error
Alarm messages Storage	signal power, MPEG2 synchronization, EVM, MER, BER before Reed-Solomon

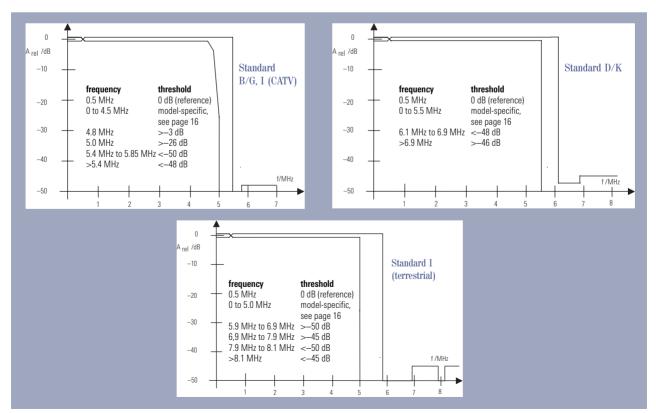
Test parameters	Range	Resolution	Error
Signal power	corresponding to level range	0.1 dB	<3 dB, <1 dB typ.
MER dB (modulation error ratio in dB)	18 dB to 30 dB 30 dB to 35 dB	0.1 dB 0.1 dB	≤0.8 dB ≤1.0 dB
MER % (modulation error ratio in %)	1.9% to 3.2% 3.2% to 12.5%	0.01% 0.01%	≤12% of actual value ≤10% of actual value
EVM (error vector magnitude)	1.17% to 2.07% 2.07% to 8.3%	0.01% 0.01%	≤12% of actual value ≤10% of actual value
SNR (signal/noise ratio)	18 dB to 30 dB 30 dB to 35 dB	0.1 dB 0.1 dB	≤0.5 dB ≤0.8 dB
I/Q amplitude imbalance	0.00% to 5.00%	0.01%	≤0.03 dB
I/Q quadrature error	0.00° to 5.00°	0.01°	≤0.03°
Carrier suppression	25 dB to 45 dB 45 dB to 60 dB	0.1 dB 0.1 dB	≤1 dB ≤3 dB
Carrier frequency offset	±100 kHz	1 Hz	≤280 Hz + 2 ppm x RF
Symbol rate offset	±150 ppm	0.1 ppm	<10 ppm, <3 ppm typ.
MPEG TS bit rate	up to 51.600 Mbit/s	1 kbit/s	<1 kbit/s
BER before Reed-Solomon	1.0 x 10 ⁻³ to 0.1 x 10 ⁻¹⁵	0.1 x 10 ^{-exponent}	-
BER after Reed-Solomon	1.0×10^{-5} to 0.1 x 10^{-14}	0.1 x 10 ^{-exponent}	-

Analog TV, model-specific characteristics

	Standard test receivers	High-end test receivers	High-end demodulators
	Models 12/78	Models 33/89	Models 33/89
RF input	selective	selective	non-selective
Connector	50Ω or $75\Omega,$ BNC or N female, front or rear panel	50 Ω , N female, rear panel and 75 $\Omega,$ BNC female, rear panel	50 Ω , N female, rear panel
Return loss	$ \geq \!$	≥17 dB (>20 dB typ.) in channel with 50 Ω connector ≥14 dB (>17 dB typ.) in channel with 75 Ω connector	≥30 dB
Frequency range (vision carrier)	48 MHz to 860 MHz	5 MHz ¹⁾ to 1000 MHz	45 MHz to 1000 MHz
Level range ²⁾	–67 dBm to +13 dBm (normal) –77 dBm to –47 dBm (with preamplifier)	-67 dBm to +21 dBm ³⁾ (normal) -67 dBm to +21 dBm ³⁾ (low distortion) -77 dBm to +21 dBm ³⁾ (low noise)	—41 dBm to +21 dBm
Image frequency rejection	VHF: ≥70 dB ⁴⁾ UHF: ≥50 dB ⁴⁾	100 dB ⁵⁾	
IF rejection		100 dB ⁵⁾	
Local oscillator			
Resolution	1 Hz	1 Hz	1 Hz
Frequency error	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶	≤2 x 10 ⁻⁶
Phase noise 6)	≥50 dB	≥58 dB	≥62 dB ⁷⁾

1) For frequencies < 10 MHz: group delay tilt increases up to 200 ns, amplitude tilt increases up to 0.7 dB pp typ., minimum input level: -30 dBm, SAW filter ON; upper sideband.

²⁾ Levels are rms values referred to sync pulse.


 $^{3)}\,$ In receive frequency range 5MHz to 15 MHz: –41 dBm to 21 dBm

⁴⁾ Image frequency of vision carrier.

⁵⁾ Applies to both frequency conversions

⁶⁾ FM S/N ratio measured at IF output, referred to ±30 kHz frequency deviation and 500 Hz modulation frequency, deemphasis 50 µs, measured to DIN45405, weighted to CCIR468-3.

⁷⁾ In receive frequency range 45 MHz to 900 MHz.

Tolerance masks of EFA for total amplitude characteristic (RF, IF, VF)

Analog TV, model-specific characteristics (continued)

	Standard test receivers Models 12/78	High-end test receivers Models 33/89	High-end demodulators Models 33/89	
Video demodulation characteristics				
Noise voltage, ref. to b/w transition	$P_{RF} \ge -33 \text{ dBm}$, 0 dB input attenuation	$P_{RF} = -33 \text{ dBm}, 0 \text{ dB}$ input attenuation	$P_{RF} \ge -1 \text{ dBm}$	
S/N _{rms} unweighted			≥60 dB typ. 63 dB	
$\mathrm{S/N}_{\mathrm{rms}}$ weighted to CCIR Rec. 567	 ≥60 dB typ. 64 dB (low noise) ≥57 dB typ. 59 dB (low distortion) 	 ≥64 dB typ. 66 dB (low noise) ≥63 dB typ. 65 dB (normal) ≥62 dB typ. 64 dB (low distortion) 	≥67 dB typ. 70 dB	
0. 14		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Signal/hum _{peak}	≥52 dB	≥52 dB	≥52 dB	
Linear distortion				
Amplitude frequency response DC to colour subcarrier Additional ripple through SAW filter	reference: 0.5 MHz ≤0.5 dB ≤0.1 dB	reference: 0.5 MHz ≤0.35 dB ≤0.1 dB	reference: 0.5 MHz ≤0.25 dB ≤0.1 dB	
Group delay response	reference: 0.1 MHz	reference: 0.1 MHz	reference: 0.1 MHz	
With constant group delay	≤20 ns	≤15 ns	≤12 ns	
With group delay dep. on TV std.	see group-delay table	see group-delay table	see group-delay table	
Additional ripple through SAW filter	≤10 ns	≤10 ns	≤10 ns	

	B/G							D/K]	K1
Frequency/MHz	General	Sweden	Norway	Denmark	Australia	General/2 (reduced to 50%)	New Zealand	CCIR Report 308	OIRT TK-III-830	0IRT GOST 20532-75	GOST 20532-83	CSFR	SABC TVT 12.2	
	Group delay/ns													
0.10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.25	$-5 \pm \Delta$	$0 \pm \Delta$	$0 \pm \Delta$	$-5 \pm \Delta$		$-2.5 \pm \Delta$		$-5\pm\Delta$		$-5 \pm \Delta$			$0 \pm \Delta$	$0\pm\Delta$
0.50		$0 \pm \Delta$	$0 \pm \Delta$							$-10 \pm \Delta$	$-8 \pm \Delta$		$0 \pm \Delta$	$0\pm\Delta$
1.00	$-53 \pm \Delta$	$0 \pm \Delta$	$0 \pm \Delta$	$-53 \pm \Delta$	$-30 \pm \Delta$	$-26.5 \pm \Delta$		$-53 \pm \Delta$	$-40 \pm \Delta$	$-40 \pm \Delta$	$-40 \pm \Delta$	$-40 \pm \Delta$	$0 \pm \Delta$	$0 \pm \Delta$
1.50		$0 \pm \Delta$	$0 \pm \Delta$							$-70 \pm \Delta$			$0 \pm \Delta$	$0 \pm \Delta$
2.00	$-90 \pm \Delta$	$0 \pm \Delta$	$0 \pm \Delta$	$-75 \pm \Delta$	$-60 \pm \Delta$	$-45 \pm \Delta$		$-87 \pm \Delta$	$-75 \pm \Delta$	$-80 \pm \Delta$	$-85 \pm \Delta$	$-85 \pm \Delta$	$0 \pm \Delta$	$0\pm\Delta$
2.25		$0 \pm \Delta$	$0 \pm \Delta$				$-60 \pm \Delta$						$0 \pm \Delta$	$0\pm\Delta$
3.00	$-75 \pm \Delta$	$0 \pm \Delta$	$0 \pm \Delta$	$-75 \pm \Delta$	$-40 \pm \Delta$	$-37.5 \pm \Delta$	$-60 \pm \Delta$	$-85 \pm \Delta$	$-90 \pm \Delta$	$-80 \pm \Delta$	$-92 \pm \Delta$	$-90 \pm \Delta$	$0 \pm \Delta$	$0\pm\Delta$
3.50		0 ±Δ			$0 \pm \Delta$								$0 \pm \Delta$	$0 \pm \Delta$
3.58		0 ±Δ											$0 \pm \Delta$	$0 \pm \Delta$
3.60		0 ±Δ	20 ±Δ										$0 \pm \Delta$	$0 \pm \Delta$
3.75	$0 \pm \Delta$					0 ±Δ	0 ±Δ						$0 \pm \Delta$	$0\pm\Delta$
3.80				0 ±Δ									$0 \pm \Delta$	$0 \pm \Delta$
4.00			50 ±20					-50 ± 20	-70 ±20	-40 ±20	-60 ± 20	-60 ±20	$0 \pm \Delta$	$0 \pm \Delta$
4.43	170 ±20	175 ±20	170 ±20	170 ±20	170 ±20	85 ±20	170 ±20	0 ±20		0 ±20	-25 ± 20	-25 ±20	40 ±20	15 ±20
4.70											0 ±20	0 ±20		
4.80	400 ±40	400 ±40	350 ±40	400 ±40	260 ±40	200 ±40	400 ±40						100 ±40	
5.00								90 ±20	0 ±20	80 ±20		70 ±20		90 ±20
5.50									90 ±20		260 ±40			

 $\begin{array}{ll} \mbox{High-end demodulator:} & \Delta = 12 \mbox{ ns} \\ \mbox{High-end test receiver:} & \Delta = 15 \mbox{ ns} \\ \end{array}$ Standard test receiver: $\Delta = 20$ ns

Group delay depending on TV standard

Analog TV, model-specific characteristics (continued)

Video demodulation characteristics (continued)	Standard te Models 12/7	st receivers 78	High-end te Models 33/8	est receivers 39	High-end demodulators Models 33/89	
Transient response						
2T pulse k factor	≤1%		≤1%	typ. 0.6%	≤1%	typ. 0.6%
2T pulse amplitude error					≤2%	typ. 1%
20T pulse amplitude error					≤3% (TV st	andards B/G, D/K, I)
12.5T pulse amplitude error					≤5% (TV st	andard M/N)
Chrominance/luminance gain					≤3%	
Chrominance/luminance delay	≤20 ns (with	n constant group delay)	≤15 ns (with constant group delay)		≤12 ns (with constant group delay)	
	≤20 ns (with	group delay dep. on TV std.)	≤20 ns (with group delay dep. on TV std.)		≤20 ns (with group delay dep. on TV std.)	
Tilt, 10/75% modulation	\leq 1% (15 kHz squarew. signal, T _{rise} 200 ns)		≤1% (15 kHz squarew. signal, T _{rise} 200 ns)) ≤1% (0.25 Hz squarew. signal, T_{rise} 2 µs) ≤1% (50 Hz squarew. signal, T_{rise} 2 µs) ≤1% (15 kHz squarew. signal, T_{rise} 200 ns)	
Nonlinear distortion						
Luminance nonlinearity	≤2%	typ. 0.3%	≤2%	typ. 0.3%	≤2%	typ. 0.4%
Differential gain	≤2%	typ. 0.3%	≤2%	typ. 0.3%	≤2%	typ. 0.4%
Differential phase	≤1°	typ. 0.4°	≤1°	typ. 0.4°	≤1°	typ. 0.5°
Intermodulation in channel, referred to b/w transition	≥52 dB ≥62 dB	typ. 56 dB (low noise) typ. 66 dB (low distortion)	≥57 dB ≥52 dB ≥62 dB	typ. 61 dB (normal) typ. 56 dB (low noise) typ. 66 dB (low distortion)	≥55 dB	
3rd-order intercept point; 0 dB attenuation	≥0 dBm ≥5 dBm	(low noise) (low distortion)	≥10 dBm ≥14 dBm	(normal) (low distortion)		

Characteristics common to all analog models

IF input		50 Ω , BNC female, rear panel		
Vision carrier frequency				
TV standards B/G, I, D/K		38.9 MHz		
Return loss in channel		≥30 dB		
Level range ¹⁾		-13 dBm to 4 dBm		
Crosstalk attenuation, RF/IF input		≥75 dB		
IF output		50 Ω , BNC female, rear panel		
Return loss in channel		≥20 dB		
Vision carrier level ¹⁾ , regulated		-7 dBm		
Input for external zero reference		75 $Ω$, BNC female, rear panel		
Control voltage		>1 V		
Delay of carrier blanking relative to co	ntrol pulse	<3 µs		
Video selectivity				
In-channel sound carrier suppression				
TV standard B/G, I, D/K		≥50 dB ≥48 dB		
Adjacent-channel vision carrier suppression				
TV standard	B/G, I (CATV)	≥50 dB		
	l (terrestrial)	≥48 dB		
	D/K	≥46 dB		

¹⁾ Levels are rms values referred to sync pulse

Characteristics common to all analog models (continued)

Video outputs	75 Ω , BNC female, front panel and 75 Ω , BNC female, real panel
Return loss (0 to 6 MHz)	\geq 26 dB
Decoupling of outputs	
Level variation at terminated output with other output short-circuited or open	≤1%
Video level, adjustable	1 V pp ±3 dB
Level inaccuracy	≤2%
Resolution of level control	10 mV
DC offset with carrier clamped to zero level	0 V ±20 mV
Quadrature signal output of sync demodulator	75 Ω , BNC female, on rear panel
Return loss (0 to 6 MHz)	≥20 dB
Gain difference, referred to nominal video output level	≤0.5 dB
Synchronous demodulation	
Phase error of switching carrier	≤1°
Vision carrier phase control	continuous, sampled (switchable)
Time constant of PLL for keyed phase control	normal, slow (switchable)
Time constant of PLL for continuous phase control	fast, normal, slow (switchable)
Sound demodulation	intercarrier method
Audio outputs	Lemo Triax female, in pairs rear panel: balanced, Z <35 Ω front panel: unbalanced, Z <10 Ω
Output signal	M1/L and M2/R
Permissible load	≥300 Ω // ≤5000 pF
Audio level, adjustable	
Reference frequency deviation	± 30 kHz or ± 50 kHz, selectable
Setting range for \pm 30 kHz reference frequency deviation	-3 dBm to +10 dBm
Setting range for ± 50 kHz reference frequency deviation	+2 dBm to +10 dBm
Resolution of level control	0.1 dB
Level accuracy, f _{mod} 500 Hz	≤0.2 dB
Amplitude frequency response, 40 Hz to 15 kHz, referred to 500 Hz	≤ ±0.3 dB
Deemphasis	50 µs, can be switched off
Distortion at ± 50 kHz frequency deviation, deemphasis on	≤0.5%
S/N ratio (intercarrier method)	
referred to $\pm 30~\text{kHz}$ frequency deviation and 500 Hz modulation frequency, me without signal	asured to DIN45405, weighted to CCIR468-3; the channel not being measured is
Vision modulation: all-black picture	≥55 dB
Vision modulation: test pattern	≥48 dB
Vision modulation: sinewave, 10% to 75% modulation	≥46 dB
Vision modulation: sinewave, 242 kHz ± 15 kHz, 10% to 75% modulation	≥42 dB
Stereo crosstalk, 40 Hz to 15 kHz referred to ±30 kHz frequency deviation and 500 Hz modulation frequency, deemphasis on	≥40 dB
Channel crosstalk, 40 Hz to 15 kHz referred to ±30 kHz frequency deviation, deemphasis on, measured with ±30 kHz spurious FM	≥74 dB
Alarm message	

Vision carrier level, RF offset, TV synchronization, vision/FM sound carrier level ratios, vision/FM sound carrier frequency spacings, FM pilot deviation, max. FM deviations, min. FM deviations

Test parameters, analog TV

	Measurement range	Resolution	Error
Vision carrier power or voltage in $\mu\text{V/mV},$ dB $\mu\text{V},$ dBmV, dBm, dB $\mu\text{W},$ dBpW			
Standard test receivers	–77 dBm to 13 dBm	0.1 dB	≤3 dB
High-end test receivers	–77 dBm to 21 dBm	0.1 dB	≤3 dB
High-end demodulators	–41 dBm to 21 dBm	0.1 dB	≤2 dB
Video level	50% to 150%	1%	≤2%

Test parameters, analog TV (continued)

	Measurement range	Resolution	Error
Vision carrier frequency	frequency range depending on EFA model	20 Hz	≤2 x1 0 ⁻⁶
Vision/FM sound carrier 1 level ratio	-23 dB to -7 dB	0.1 dB	≤2 dB
Vision/FM sound carrier 2 level ratio	-30 dB to -14 dB	0.1 dB	≤2 dB
Vision/FM sound carrier 1 frequency spacing	nominal IC frequency $\pm 50 \text{ kHz}$	100 Hz	≤200 Hz ¹⁾
Vision/FM sound carrier 2 frequency spacing	nominal IC frequency $\pm 50~{ m kHz}$	100 Hz	≤200 Hz s ¹⁾
FM sound carrier deviation	0 kHz to 80 kHz	100 Hz	$\leq 3\% \pm 200$ Hz ²⁾
FM pilot carrier deviation (average)	1 kHz to 5 kHz	10 Hz	≤5%
FM pilot carrier deviation (peak value)	1 kHz to 10 kHz	10 Hz	≤5%
Pilot frequency	pilot frequency ±300 Hz	2 Hz	≤2 Hz
Residual AM	0% to 30%	0.1%	0.5%

1) With unmodulated sound carrier

²⁾ Without vision modulation

Options

NICAM Demodulator EFA-B2

Standard		NICAM-728
NICAM IF carrier frequency	Standard B/G	33.05 MHz
	Standard I	32.348 MHz
Vision/NICAM carrier level ratio		15 dB to 31 dB
FM sound carrier suppression		≥40 dB
Frequency response deviation from	m standard curve up to 182 kHz	≤1 dB
Group delay up to 120 kHz		≤150 ns
Group delay up to 182 kHz		≤200 ns
NICAM intercarrier input		50 Ω , BNC female, rear panel
NICAM carrier frequency	Standard B/G	5.85 MHz
	Standard I	6.552 MHz
Return loss		≥20 dB
Level range		-22 dBm to -5 dBm
NICAM-728 data input		75 Ω , TTL, BNC female, rear panel
NICAM-728 clock input		75 Ω , TTL, BNC female, rear panel
QPSK I output		BNC female, rear panel
Output impedance		100 Ω
Permissible load		\geq 1 k Ω // \leq 1 nF
Level		0.8 V pp
QPSK Q output		BNC female, rear panel
Output impedance		100 Ω
Permissible load		\geq 1 k Ω // \leq 1 nF
Level		0.8 V pp
Clock/2 output		75 Ω , TTL, BNC female, rear panel
NICAM-728 data output		75 Ω, TTL, BNC female, rear panel
NICAM-728 clock output		75 Ω , TTL, BNC female, rear panel
Audio output, balanced		Lemo Triax female, pair of connectors, rear panel
Output impedance		<35 Ω
Permissible load		≥300 Ω // ≤5 nF
Level at 600 $\Omega_{\text{r}}~\text{f}_{\text{mod}}=400~\text{Hz}$		0 dBm ±0.2 dB

Audio output, unbalanced		Lemo Triax female, pair of connectors, front panel
Output impedance		<35 Ω
Permissible load		\geq 300 Ω // \leq 5 nF
Level at 600 Ω , f _{mod} = 400 Hz		0 dBm
NICAM additional information		25-contact SUB-D, TTL, rear panel
Permissible load		\geq 1 k Ω // \leq 100 pF
 Control bits 		C0 to C4
 Additional data 		A0 to A10
— Frame sync		
 Additional data sync 		
- Bit errors		parity bit evaluation
Audio demodulation characteristics		
Frequency response:	30 Hz to 14.7 kHz	≤0.2 dB
	14.7 kHz to 15 kHz	≤0.3 dB
Phase difference between cha	nnels (stereo)	≤3°
Distortion		≤0.15%
Crosstalk		≤–80 dB
S/N ratio (empty channel, referred to full-scale level)		
unweighted		≥80 dB
weighted (CCIR 468-3)		≥80 dB
Aliasing products:	30 Hz to 14.7 kHz	≤–55 dB
	14.7 kHz to 15 kHz	≤–35 dB
Other spurious lines (referred to full-scale level)		≤-50 dB
Additional alarm messages		

Additional alarm messages

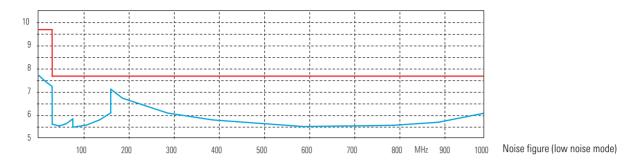
Vision/NICAM sound carrier power ratio, NICAM intercarrier level, eye height, BER, data jitter; loss of: NICAM data/NICAM clock, frame sync, headroom

Additional test parameters

	Measurement range	Resolution	Error
Vision/NICAM carrier level ratio	13 dB to 34 dB	0.1 dB	≤1.5 dB
Level (intercarrier input)	-24 dBm to -3 dBm	0.1 dB	≤1.5 dB
Eye height	10% to 100%	1%	\leq 2 x (100 / displayed value)% ¹⁾
	Measurement range	Resolution	Error
BER	$0 \ge 10^{-9}$ to <1 x 10^{-5}	0.2 x 10 ^{-exponent}	-
	1 x 10 ⁻⁵ to 1 x 10 ⁻²	0.1 x 10 ^{-exponent}	-
Clock or data jitter	0 Hz to 50 Hz	1 Hz	$\leq 20\% \pm 2$ Hz ²⁾

¹⁾ Reference: 100%; vision modulation: all-black picture

²⁾ Valid for jitter frequency 50 Hz to 60 Hz; 3 dB bandwidth: 10 Hz to 120 Hz


RF Selection EFA-B3

RF selection for High-End Demodulator Models EFA 63/33/89. Two selective RF inputs are available on the rear with 50 Ω and 75 Ω impedance in addition to the non-selective RF input of the high-end demodulator. Demodulation of variable IFs up to 50 MHz via the selective RF inputs.

IF inputs	selective
Connectors	50 $\Omega,$ N female, rear panel and 75 $\Omega,$ BNC female, rear panel
Return loss	17 dB (>20 dB typ.) in channel with 50 Ω connector 14 dB (>17 dB typ.) in channel with 75 Ω connector
Frequency range	4.5 MHz ¹⁾ to 1000 MHz
Level range	see high-end test receiver column of relevant demodulator mode
System performance	
Noise figure	7 dB typ. (low noise) 9 dB typ. (normal) 11 dB typ. (low distortion)
Image frequency rejection	100 dB
IF rejection	100 dB

1) For frequencies < 10 MHz: group delay tilt increases up to 200 ns, amplitude tilt increases up to 0.7 dB pp typ., minimum input level: –30 dBm, SAW filter ON.

RF Selection EFA-B3 (continued)

MPEG2 Decoder EFA-B4

Simultaneous monitoring of all signals in transport stream. Realtime measurement functions according to test specifications for DVB systems (ETR290): priorities 1, 2 and 3.

System performance	
Transport stream	according to ISO/IEC 1-13818
Data rate of transport stream	up to 54 Mbit/s
Length of data packets	188/204 bytes, automatic switchover
External TS ASI input	BNC female, rear panel, 75 Ω
Asynchronous serial MPEG2 transport stream	270 Mbit/s
Level	200 mV pp to 1 V pp
Video signal output (CCVS)	BNC female, rear panel, 75 Ω
Level	1 V pp ±1%
DC offset (black level)	0 V
Video serial digital output (ITU-R601)	BNC female, rear panel, 75 Ω
Audio signal output	Lemo Triax connectors, in pairs; front panel: unbalanced, Z <10 Ω rear panel: balanced, floating, Z <25 Ω
Signals	left/right, sound 1/sound 2, mono
Level of balanced output at rear panel (full scale)	+6 dBm ±0.2 dB into 600 Ω
Frequency response (40 Hz to 15 kHz)	≤0.5 dB, referred to 1 kHz
S/N ratio	>70 dB, unweighted
THD	>70 dB

Video Distributor EFA-B6

The video distributor option provides four decoupled video outputs (CCVS) for analog and digital TV. Option EFA-B4 is required for digital TV.

Video output	2 x BNC female front panel; 2 x BNC female rear panel
Impedance	75 Ω
Return loss (0 MHz to 6 MHz)	≥26 dB
Level accuracy	<u>≤2%</u>
DC offset of video signal (MPEG2 decoder mode, black level)	0 V
DC offset of video signal (analog TV mode, zero vision carrier)	0 V
Decoupling of outputs (level variation at terminated output when switching the other outputs between short circuit and open circuit)	≤1%
Quadrature signal outputs (quadrature signal of sync demodulator in Nyquist demodulator mode)	BNC female, front and rear panel
Impedance	75 Ω
Return loss (0 MHz to 6 MHz)	≥20 dB
Decoupling of outputs (level variation at terminated output when switching the other outputs between short circuit and open circuit)	≤1%

Switchable Video Bandwidth EFA-B7 (for video bandwidth switchover to 6 MHz for TV standard B/G)

	Standard test receivers	High-end test receivers	High-end demodulators
Amplitude frequency response	reference: 0.5 MHz	reference: 0.5 MHz	reference: 0.5 MHz
0 Hz to 5 MHz	≤0.5 dB	≤0.35 dB	≤0.25 dB
5 MHz to 5.5 MHz	≤0.7 dB	$\leq 0.5 \text{ dB}$	≤ 0.45 dB
Additional ripple through SAW filter	≤0.1 dB	≤0.1 dB	≤0.1 dB
Group delay response	reference: 0.1 MHz	reference: 0.1 MHz	reference: 0.1 MHz
With constant group delay			
0 Hz to 5.5 MHz	≤20 ns	≤15 ns	≤12 ns
With group delay depending on TV standard	see table on page 17	see table on page 17	see table on page 17
Additional ripple through SAW filter	≤15 ns	≤15 ns	≤15 ns

6 MHz SAW Filter EFA-B11

This filter is recommended for rejection of adjacent channels in systems with 6 MHz channel spacing.

Ripple in band	0.4 dB pp
Rejection of adjacent channels	50 dB (>±3.8 MHz) 85 dB (>±6 MHz) with High Adj. Chan Power ON

7 MHz SAW Filter EFA-B12

This filter is recommended for rejection of adjacent channels in systems with 7 MHz channel spacing.

Ripple in band	0.7 dB pp
Rejection of adjacent channels	>55 dB (>±4.0 MHz) >90 dB (>±5.3 MHz) with High Adj. Chan Power ON

8 MHz SAW Filter EFA-B13

This filter is recommended for shoulder attenuation measurement according to FCC recommendation and for rejection of adjacent channels in systems with 8 MHz channel spacing.

Ripple in band	0.8 dB pp
Rejection of adjacent channels	50 dB (>±4.8 MHz) 90 dB (>±5.3 MHz) with High Adj. Chan Power ON

2 MHz SAW Filter EFA-B14

This filter is recommended for rejection of adjacent channels in systems with 2 MHz channel spacing.

Ripple in band	0.7 dB pp
Rejection of adjacent channels	45 dB (>±1.3 MHz)

Digital Demodulator Platform EFA-B20

Supports ATSC/8VSB demodulation (for specifications see ATSC/8VSB characteristics of EFA models 50/53), ITU-T J.83/B demodulation (for specifications see ITU-T J.83/A characteristics of EFA models 70/73) and DVB-C (ITU-T J.83/A/C) demodulation.

General data

me LCD (320 x 240), backlit
IEEE488 bus, RS-232-C, printer (Centronics)
2-1/-2
-45°C
0°0;
20 V/220 V to 240 V; +10%/-15% (autoranging), 50 Hz to 60 Hz
)/78: 70 VA 3/89: 75 VA 3/89 + EFA-B3: 90 VA
147 mm x 460 mm
2 kg, depending on options

Ordering information

DVB-C Test Receiver, selective 4/16/32/64/128/256 QAM, MPEG data stream output, constellation diagram DVB-C Test Demodulator, broadband	EFA 60	2067.3004.60
4/16/32/64/128/256 QAM, MPEG data stream output, constellation diagram	EFA 63	2067.3004.63
TH Task Department Call D/C due leaves d		
TV Test Receiver, Std. B/G, dual sound IF 38,9 MHz, RF 45 MHz to 860 MHz, IEEE bus	EFA 12	2067.3004.12
TV Demodulator, Std. B/G, dual sound IF 38.9 MHz, RF 45 MHz to 1000 MHz, IEEE bus	EFA 33	2067.3004.33
TV Test Receiver, Std. D/K or I (mono) IF 38.9 MHz, RF 45 MHz to 860 MHz,, IEEE bus	EFA 78	2067.3004.78
TV Demodulator, Std. D/K or I (mono) IF 38.9 MHz, RF 45 MHz to 1000 MHz	EFA 89	2067.3004.89

Options

NICAM Demodulator for TV standard B/G - D/K	EFA-B2	2067.3610.02
NICAM Demodulator for TV standard I	EFA-B2	2067.3610.04
RF Selection for demodulators (models 33/43/53/63/73/89/93)	EFA-B3	2067.3627.02
MPEG2 Decoder	EFA-B4	2067.3633.02
Video Distributor (four video outputs, only models 33/89/93)	EFA-B6	2067.3656.02
Switchable Sound Trap (for models 12/33)	EFA-B7	2067.3710.02
6 MHz SAW Filter (for digital EFA models or EFA-B10, EFA-B20)	EFA-B11	2067.3691.00
7 MHz SAW Filter (for digital EFA models or EFA-B10, EFA-B20)	EFA-B12	2067.3556.02
8 MHz SAW Filter (for EFA 5x,/6x/7x or EFA-B20)	EFA-B13	2067.3579.03
2 MHz SAW Filter (for EFA 5x,/6x/7x or EFA-B20)	EFA-B14	2067.3562.00
Digital Demodulator Platform	EFA-B20	2067.3585.02

Firmware options

DVB-C /J83/A/C (QAM) Firmware (for models 50/53/70/73 or option EFA-B20)	EFA-K21	2067.4000.02
ATSC/8VSB Firmware (for models 60/63/70/73 or option EFA-B20)	EFA-K22	2067.4017.02
J.83/B (QAM) Firmware (for models 50/53/60/63 or option EFA-B20)	EFA-K23	2067.4023.02
FIR Coefficient Readout Firmware (only for EFA 5x or EFA-B20 + EFA-K22)	EFA-K25	2067.4046.02

Recommended extras

EFA Calibration Values	EFA-DCV	2082.0490.09
EFA-B4 Calibration Values	EFA-DCV	2082.0490.15
19" Adapter	ZZA-93	0396.4892.00
Lemo Triax connector (mono) with connecting cable (open)		2067.7451.00
Service manual		2068.0950.24
Carrying Bag for 19" units, 3 HU, depth 460 mm	ZZT-314	1001.0523.00

ROHDE&SCHWARZ GmbH & Co. KG · Mühldorfstraße 15 · 81671 München · Germany · P.O.B. 8014 69 · 81614 München · Germany · Telephone +49894129-0 www.rohde-schwarz.com · Customer Support: Tel. +491805124242, Fax +4989 4129-13777, E-mail: CustomerSupport@rohde-schwarz.com